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ABSTRACT

Multi-issue negotiation protocols represent a promising field since most ne-

gotiation problems in the real world involve multiple issues. Our work focuses

on negotiation with multiple interdependent issues in which agent utility func-

tions are nonlinear. Firstly, we define utility function based on cone-constraints

which are nonlinear. The utility function based on cone-constraint is more real-

istic than existing utility models and configures the risk attitudes to the cone-

constraint. However, if the utility function has cone-constraint features, the

utility space becomes extremely nonlinear, making it very difficult to find the

optimal agreement point. Existing works have not yet concerned with agents’

private information that should be concealed from others in negotiations. In

this paper, we propose Distributed Mediator Protocol and Take it or Leave

it Protocol for negotiation that can reach agreements and completely conceal

agents’ private information. Moreover, we propose Hybrid Secure Protocol that

combines Distributed Mediator Protocol with Take it or Leave it Protocol. The
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Hybrid Secure Protocol can also reach agreements while completely concealing

agents’ private information. Furthermore, the Hybrid Secure Protocol achieves

high optimality and uses less communication cost. We demonstrate the per-

formance of Hybrid Secure Protocol in cone-constraints and cube-constraints

situations.

(1) INTRODUCTION

Multi-issue negotiation protocols represent an important field of study. Even

though there has been a lot of previous work in this area ([2, 3, 4] etc.), most have dealt

exclusively with simple negotiations involving independent multiple issues. Many

real-world negotiations, however, are complex and involve interdependent multiple

issues. First, we propose a model of highly complex utility spaces based on “cone-

constraints”. We use cone-constraints to capture the intuition that agents’ utilities for

a contract usually decline gradually, rather than step-wise, with distance from their

ideal contract. In previous works, the utility model of cube-constraints is focused

in multiple interdependent issues negotiation field([7, 11] etc.). The model of cone-

constraints is more realistic than existing works such as cube-constraints on multiple

interdependent issues negotiation. These previous studies mainly assume that agents

have an incentive to cooperate to achieve win-win agreements because the situation

is not a zero-sum game.

Existing works have not yet been concerned with agents’ private information.

In negotiation, agents’ private information should not be revealed to other agents

and mediators. For example, suppose that several companies collaboratively design

and develop a new car model. If one company reveals more private information

than the other companies, the other companies will know more of that company’s
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important information, such as utility information. As a result, the company suffers

a disadvantage in subsequent negotiations, and the mediator might leak the agent’s

utility information. Furthermore, explicitly revealing private information is dangerous

for privacy reasons. Therefore, our aim is to create a protocol that will find high-

quality solutions while concealing agent’s private information.

We previously proposed a bidding-based negotiation protocol that focuses on in-

terdependent multiple issues. Agents generate bids by sampling and searching their

utility functions, and the mediator finds the optimum combination of submitted bids

from agents [11]. This protocol can achieve an agreement without revealing all agent

private information. Moreover, we proposed a threshold adjusting mechanism where

the mediator adjusts the agent’s threshold for generating bids. In the threshold ad-

justing mechanism, agents make agreements without excessively revealing their utility

information [6]. However, since in these protocols the computational complexity for

finding the solution is too large, we proposed a representative-based protocol [8] where

the mediator selects representatives who propose alternatives to other agents. This

protocol drastically reduced the computational complexity of the number of agents

because the number of agents that make agreements was reduced.

Though, there are two main issues in the above protocols. First, it is impossible

for the above protocols to conceal all agent private information because agents have

to reveal some private information. Additionally, scalability for the complexity of

agent’s utility function isn’t very high. Especially, if the utility function has cone-

constraint features, the utility space becomes extremely nonlinear, making it very

difficult to find the optimal agreement point. Therefore, we need to create another

new protocol that conceals all agent private information with high scalability for the

complexity of agent utility functions.

In this paper, we propose the Distributed Mediator Protocol (DMP) and the
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Take it or Leave it (TOL) Protocol. They make agreements and conceal agent utility

values. In the Distributed Mediator Protocol, we assume many mediators who search

in utility space to find agreements. When searching in their search space, they employ

the Multi-Party Protocol with which they can simultaneously calculate the sum the

per agent utility value and conceal it. Furthermore, Distributed Mediator Protocol

(DMP) improves the scalability for the complexity of the utility space by dividing the

search space toward the mediators. In the Take it or Leave it (TOL) Protocol, the

mediator searches using the hill-climbing search algorithm. The evaluation value is

decided by responses that agents either take or leave moving from the current state

to the neighbor state.

We propose the Hybrid Secure Protocol (HSP) that combines DMP with TOL. In

Hybrid Secure Protocol (HSP), TOL is performed first to improve the initial state in

the DMP step. Next, DMP is performed to find the local optima in the neighborhood.

Hybrid Secure Protocol (HSP) can also reach an agreement and conceal per agent

utility information. Additionally, Hybrid Secure Protocol (HSP) can reduce the re-

quired memory for making an agreement, which is a major issue in DMP. Moreover,

we demonstrate that HSP can improve communication cost (memory usage) more

than DMP.

In general, although DMP and HSP are protocols among agents and mediators,

they do not define the agreement search method, which means how the mediator

searches and finds agreement points. Thus, we examine three agreement search meth-

ods, a hill climbing, a simulated annealing and a genetic algorithm in cone-constraint

and cube-constraint situations. Hill climbing and simulated annealing have been em-

ployed in the previous works[7, 11]. However, genetic algorithm also performs well

to find high optimal contract. Therefore, we compare GA-based method with the

other methods in this paper. Additionally experiment results in previous works[7]
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is only evaluated in cube-constraints. In this paper, we evaluate the methods in

cone-constraints situation that is highly complex.

The remainder of the paper is organized as follows. First, we describe a model

of nonlinear multi-issue negotiation and utility function based on cube-constraints

and cone-constraints. Second, we propose the Distributed Mediator Protocol (DMP)

and the Take it or Leave it (TOL) Protocol. Third, we propose the Hybrid Secure

Protocol (HSP). Fourth, we present the experimental results about optimality and

communication cost (memory). Finally, we describe related works and draw conclu-

sions.

(2) NONLINEAR UTILITY FUNCTION

In the literature of multi-issue negotiations, we consider the situation where n

agents want to reach an agreement with a mediator who manages the negotiation

from the middle position. There are m issues, sj ∈ S, to be negotiated. The number

of issues represents the number of utility space dimensions. For example, if there are

three issues, the utility space has three dimensions. The issues are not “distributed”

over agents, who are all negotiating a contract with N (e.g. 10) issues in it. All

agents are potentially interested in the values for all N issues. Issue sj has a value

drawn from the domain of integers [0, X], i.e., sj ∈ [0, X](1 ≤ j ≤ M). A contract

is represented by a vector of issue values ~s = (s1, ..., sm). The objective function for

agreement search protocols can be described as follows:

arg max
~s

∑
i∈N

ui(~s).

The proposed protocols in the literature try to find contracts that maximize social

welfare, i.e., the total utilities for all agents. Such contracts, by definition, will also
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be Pareto-optimal.

In this paper, we deal with cube-constraints and cone-constraints as the utility

function. Every agent has its own, typically unique, set of constraints.

Figure 1: Example of a cube-constraint

Cube-constraints: An agent’s utility function is described in terms of constraints

[11]. There are l constraints, ck ∈ C. Each constraint represents a region with

one or more dimensions and has an associated utility value. Constraint ck has

value wi(ck, ~s) if and only if it is satisfied by contract ~s(1 ≤ k ≤ l). We call this

type of constraint a “cube”-constraint. Figure 1 shows an example of a binary

constraint between Issues 1 and 2. This constraint, which has a value of 55,

holds if the value for Issue 1 is in the range [3, 7] and the value for Issue 2 is in

the range [4, 6].

In recent works (e.g. [10]), several types of cube-constraints were proposed.

Cone-constraints: An agent’s utility function can be described in terms of cone-

constraints. Figure 2 shows an example of a binary cone-constraint between

Issues 1 and 2. This cone-constraint has a value of 20, which is maximum if the

situation is ~scentral = [2, 2]. The impact region is ~w = [1, 2]. The expression for
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Figure 2: Example of cone-constraints

a segment of the base is (x1 − 2)2 + (x2 − 2)2/4 = 11.

Suppose there are l cone-constraints, C = {ck| 1 ≤ k ≤ l}. Cone-constraint

ck has gradient function gk(~scentral, ~w), which is defined by two values: central

value ~scentral, which is the highest utility in ck, and impact region ~w, which

represents the region where ck is affected. We assume not only circle-based but

also ellipse-based cones. Thus constraint ck has value ui(ck, ~s) if and only if it is

satisfied by contract ~s. In this paper, impact region ~w is not a value but a vector.

These formulas can represent utility spaces if they are in a n-dimensional space.

In addition, cone-constraints can include the risk attitude for constraints by

configuring gradient function gk(~scentral, ~w). This risk means the possibility to

fail to make agreements. If the agent usually has a risk neutral attitude for ck, gk

is defined as (B) in Figure 2 (e.g., proportion). However, the attitudes (types)

of agent can change from risk-seeking to risk-averse for making agreements. For

example, if agents have a risk-seeking attitude for constraint ck, gk is defined as

1The general expression is
m∑

i=1

x2
i /w2

i = 1
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(A) in Figure 2 (e.g., exponent). If an agent has a risk-averse attitude for ck,

gk is defined as (C) in Figure 2. If agents have the most risk-averse attitude for

ck, gk stays constant. Therefore, ck is shaped like a column if the agents have

the most risk-averse attitude.

An agent’s utility for contract ~s is defined as ui(~s) =
∑

ck∈C,~s∈x(ck) wi(ck, ~s), where

x(ck) is a set of possible contracts (solutions) of ck. This expression produces a

“bumpy” nonlinear utility space with high points where many constraints are satisfied

and lower regions where few or no constraints are satisfied.

Figure 3: Example of utility space

Figure 3 shows an example of a nonlinear utility space with two issues. This

utility space is highly nonlinear with many hills and valleys. Compared with cube-

constraints, the utility function is highly complex because its highest point is nar-

rower. Therefore, the protocols for making agreements must search in highly complex

utility space. A simple simulated annealing method to directly find optimal contracts

is especially insufficient in a utility function based on cone-constraints.

We assume, as is common in negotiation contexts, that agents do not share their

utility functions with each other to preserve a competitive edge. Generally, in fact,
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agents do not completely know their desirable contracts in advance, because their own

utility functions are simply too large. If we have 10 issues with 10 possible values per

issue, for example, this produces a space of 1010 (10 billion) possible contracts, which

is too many to evaluate exhaustively. Agents must thus operate in a highly uncertain

environment.

(3) SECURE NEGOTIATION PROTOCOLS

(3.1) Distributed Mediator Protocol (DMP)

We propose the Distributed Mediator Protocol (DMP) in this subsection. We

assume there are more than two mediators (Distributed Mediator) so that DMP

achieves distributed search and protection of the agent’s private information by em-

ploying the Multi-Party Protocol[16, 21]. DMP is shown as follows.

We assume n mediators (M0, . . . ,Mn) who can calculate the sum of all the agent

utility values if k mediators get together, and there are m agents (Ag0, . . . , Agm). All

mediators share q, which is preliminarily the prime number.

Step 1: The mediators divide the utility space (search space) and choose a mediator

who manages it. How to divide the search space and assign tasks is beyond the

scope of this discussion. Parallel computation is possible by dividing the search

space. This means that the computational complexities during searching can

decrease.

Step 2: Each mediator searches his/her search space with a local search algorithm

[20]. Hill-climbing search (HC) and simulated annealing search are examples of

local search algorithms. The objective function using a local search algorithm is

used to maximize the social welfare. During the search, the mediator declares
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a Multi-Party Protocol if he/she is searching in the state for the first time.

After that, the mediator selects k mediators from all mediators and asks for

generating v(shares) from all agents.

Step 3: Agent i (Ai) randomly selects k dimension formula, which fulfills fi(0) = xi,

and calculates vi,j = fi(j). (xi: agent’s i’s utility value). After that, Ai sends

vi,j to Mj.

Step 4: Mediator j (Mj) receives v1,j, . . . , vm,j from all agents. Mj calculates vj =

v1,j + · · · + vm,j mod q and reveals vj to the other mediators.

Step 5: The mediators calculate f(j), which fulfills f(j) = vj by Lagrange’s inter-

polating polynomial. Finally, s, which fulfills f(0) = s, is the sum of all agent

utility values.

Steps 2 ∼ 5 are repeated until they fulfill the at-end condition in the local search

algorithm.

Step 6: Each mediator informs the maximum value (alternative) in his space to

all mediators. After that, the mediators select the maximum value from all

alternatives.

Figure 4 shows the flow in DMP. There are three agents and two mediators. If

two mediators get together, they can calculate the sum of the per agent utility value

(k = n). The gray area shows that agents perform the steps without revealing them.

As the figure indicates, the selection of multinomial (fi), generating share (v), adding

the share, and Lagrange’s interpolating polynomial can calculate the sum of all agent

utility values and conceal them.

DMP has an advantage for privacy for an agent’s utility information and scalability

for utility space. The details are shown as follows.
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Figure 4: Distributed Mediator Protocol

Privacy DMP can calculate the sum of all agent utility values and conceal them.

The proof is identical to the Multi-Party Protocol [16]. In DMP, other agents

and the mediators can’t know the utility values without illegally colluding.

Additionally, k, which is the number of mediators performing the Multi-party

protocol, is the tradeoff between privacy issues and computational complexity.

If k mediators exchange their shares (v) illegally, they can expose the agent

utility values. Therefore, it is good for protecting an agent’s privacy information

that k is large number that mediators can’t collude illegally. If k is large number,

mediators take a lot of trouble with colluding illegally. However, it requires more

computation time because more mediators have to stop searching.

Scalability The computational cost can be greatly reduced because the mediators

divide the search space. In existing protocols, they cannot find better agree-

ments when the search space becomes too large. However, this protocol can
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locate better agreements in large search spaces by dividing the search space.

DMP has a weak point: too many shares (v) are generated. This is because

shares are generated that correspond to the search space. To generate shares requires

much more communication cost with agents than searching without generating shares.

Thus, we need to generate fewer shares with high optimality.

(3.2) Take it or Leave it (TOL) Protocol for Negotiation

We propose the Take it or Leave it (TOL) Protocol, which can also reach agree-

ments and conceal all agents’ utility information. The mediator searches with the

hill-climbing search algorithm [20], which is a simple loop that continuously moves in

the direction of increasing evaluated value. Values for each contract is evaluated by

the responses that agents take or leave to the offers to move from the current state

to the neighbor state. The agents can conceal their utility value using this evaluation

value. This protocol consists of the following steps.

Step 1: The mediator randomly selects the initial state.

Step 2: The mediator asks the agents to move from the current to the neighbor

state.

Step 3: Each agent compares its current state with the neighbor state and deter-

mines whether to take or leave it. If the neighbor state provides higher utility

value than the current state, the agent “takes it”. If the current state provides

higher or identical utility value than the neighbor state, the agent “leaves it”.

Step 4: The mediator selects the next state declared by the most agents as “take it”.

However, the mediator selects the next state randomly if there are more than
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two states that most agents declared as “take it”. The mediator can prevent

the local maxima from being reached by random selection.

Steps 2, 3, and 4 are repeated until all agents declare “leave it” or the mediator

determines that a plateau has been reached. A plateau is an area of the state space

landscape where the evaluation function is flat.

Figure 5: Take it or Leave it (TOL) Protocol

Figure 5 shows the concept of the “Take it or Leave it (TOL) Protocol”. First, the

mediator informs agents about the state whose evaluation value he wants to know.

Second, agents search for their utility space and declare “take it” or “leave it”. Then

they tell the number of agents who declare “take it” (VALUE (state)). These steps

are repeated until they satisfy the at-end condition.

“Take it or Leave it (TOL) Protocol” has an advantage of lower time complex-

ity because it easily rates evaluated value. However, this protocol can’t find high

optimality solutions when a plateau is reached.
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(4) HYBRID SECURE PROTOCOL (HSP) FOR NEGOTIATION

We propose a new protocol that combines DMP with TOL to solve DMP’s weak

point. This new protocol is called the Hybrid Secure Protocol (HSP) for negotiation.

HSP generates fewer shares than DMP. The Hybrid Secure Protocol (HSP) is shown

as follows.

Step 1: The mediators divide the utility space (search space) and choose a mediator

who manages it.

Step 2: Each mediator searches in her search space using TOL proposed in 3.2. The

initial state is selected randomly. By performing the TOL at first, the mediators

can find somewhat higher optimality of solutions without generating shares (v).

Step 3: Each mediator searches in her search space using step 2 ∼ step 5 in DMP

proposed in 3.1. The initial state is the solution found in previous step. By

performing DMP after TOL, mediators can find the local optima in the neigh-

borhood and conceal the per agent private information.

Steps 2 and 3 are repeated many times by changing the initial state.

Step 4: Each mediator communicates the maximum value (alternative) in his space

to all mediators. After that, the mediators select the maximum value from all

alternatives. Finally, the mediators propose this alternative as the agreement

point.

HSP can find solutions with fewer shares than DMP because the initial state in Step

3 is higher than only performing DMP. In addition, TOL doesn’t generate shares,

and DMP searches in states in which TOL hasn’t searched. Thus, HSP can reduce
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the number of shares. Furthermore, TOL and DMP can protect agents’ utility value

(private value). Therefore, HSP can also protect agents’ utility value.

Meanwhile, optimality in HSP is higher. TOL usually stops searching after reach-

ing the plateau. Additionally, the main reason for lowering the optimality in DMP

is to reach the local optima, although the initial value in Step 3 is usually different

because it is decided by TOL. Therefore, HSP can find higher agreement in optimality.

(5) EXPERIMENTAL RESULTS

(5.1) Setting of Experiment

We conducted several experiments to evaluate the effectiveness of our approach.We

conducted several experiments to evaluate the effectiveness of our approach. In each

experiment, we ran 100 negotiations between agents with randomly generated utility

functions. The following are the parameters for our experiments. The number of

agents was six, and the number of mediators was four.

We compared the following methods: “(A) DMP (SA)” is the Distributed Media-

tor Protocol and the search algorithm is simulated-annealing [20]. “(B) DMP (HC)”

is the Distributed Mediator Protocol and the search algorithm is hill-climbing [20].

“(C) DMP (GA)” is the Distributed Mediator Protocol and the search algorithm

is the genetic algorithm [20]. “(D) HSP (SA)” is the hybrid secure protocol, and

the search algorithm in the distributed mediator step is simulated annealing. “(E)

HSP (HC)” is the hybrid secure protocol, and the search algorithm in the distributed

mediator step is the hill-climbing algorithm.

In the optimality experiments, for each run, we applied an optimizer to the sum

of all agent utility functions to find the contract with the highest possible social

welfare. This value was used to assess the efficiency (i.e., how closely optimal social
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welfare was approached) of the negotiation protocols. To find the optimum contract,

we used simulated annealing (SA) because exhaustive search became intractable as

the number of issues grew too large. The SA initial temperature was 50.0, which

decreased linearly to 0 over the course of 2500 iterations. The initial contract for

each SA run was randomly selected. Optimality rate is defined as (The maximum

utility value calculated by each method) / (Optimum contract value using SA).

The following are the parameters for our experiments:

The number of agents is six, and the number of mediators is 2(the number of issues). In

DMP, they can calculate the sum of the per agent utility values if four mediators get

together. In DMP, the search space is divided equally.

Utility function (Cube-constraint) The domain for the issue values is [0, 9]. Con-

straints include 10 unary constraints, 5 binary constraints, 5 trinary constraints,

etc. (a unary constraint relates to one issue, a binary constraint relates to two

issues, and so on). The value for a constraint is 100 × (Number of Issues).

Constraints that satisfy many issues have, on average, larger weights, which

seems reasonable for many domains. To meet scheduling, for example, higher

order constraints concern more people than lower order constraints, so they

are more important. The maximum width for a constraint is 7. The following

constraints, therefore, would all be valid: Issue 1 = [2, 6], Issue 3 = [2, 9], and

Issue 7 = [1, 3].

Utility function (Cone-constraint) The domain for the issue values, the num-

ber of constraints and maximum width for a constraint are similar to the

setting of cube-constraints. The maximum value for a constraint is 100 ×

(Number of Issues). The gradient function is defined as u(~s) = (Max V alue)∗

(1−(distance)/(width)). (u(~s): utility value at ~s when ~sisinthecone−constraints,
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(distance): distance between ~s and the central point, (width): impact region,

(Max Value): value at the central point)

We set the following parameters for the search methods: HC, SA, and GA.

Hill climbing (HC): The number of iterations is 20 + (Number of issues) × 5.

The final result is the maximum value achieved.

Simulated annealing (SA): The annealing schedule for the distributed mediator

protocol included a initial temperature is 50. For each iteration, the temper-

ature is decreased by 0.1. Thus, it decreased to 0 by 500 iterations. 20 +

(Number of issues) × 5 searches are conducted while the initial start point is

being changed. The annealing schedule for the hybrid secure protocol in dis-

tributed mediator protocol step included an initial temperature of 10 with 100

iterations. Note that the annealer must not run too long or too ‘hot’ because

then each initial state by TOL will tend to find the global optimum instead of

the peak of the optimum nearest the initial state in DMP.

Genetic algorithm (GA): The population size in one generation is 20 + (Number

of Issues) × 5. We employed a basic crossover method in which two parent

individuals are combined to produce two children (one-point crossover). The

fitness function is the sum of all agents’ (declared) utility. 500 iterations were

conducted. Mutations happened at very small probability. In a mutation, one

of the issues in a contract vector was randomly chosen and changed. In the

GA-based method, we define an individual as a contract vector.

Our code was implemented in Java 2 (1.5) and run on a core 2-duo processor iMac

with 1.0 GB memory on a Mac OS X 10.5 operating system.
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(5.2) Experimental Results

Figure 6: Optimality Rate (Cube-constraints)

Figure 6 shows the optimality rate in five protocols in “cube”-constraints situ-

ation. “(B) DMP (HC)” decreases rapidly based on the number of issues because

hill-climbing reaches local optima by increasing the search space. “(C) DMP (GA)”

does not decrease rapidly even if the number of issues increased. Additionally, “(A)

DMP (SA)” is the same as the optimal solution. Therefore, optimality in DMP de-

pends on the search algorithm. “(D) HSP (HC)” have high optimality because HSP

performs DMP after performing TOL. In addition, “(D) HSP (HC)” has higher opti-

mality than “(C) HSP (SA)” because SA in the DMP step sometimes stops searching

for a worse state than the initial state due to a random nature. But HC stops search-

ing for a better state than the initial state.

Figure 7 shows the optimality rate in five protocols in “cone”-constraints situation.
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Figure 7: Optimality Rate (Cone-constraints)

“(B) DMP (HC)” decreases rapidly based on the number of issues and “(C) DMP

(GA)” does not decrease rapidly even if the number of issues increased. Therefore,

optimality in DMP is similar results in cone-constraints situation. “(D) HSP (HC)”

also have high optimality and “(D) HSP (HC)” has higher optimality than “(C) HSP

(SA)”. Therefore, “(D) HSP (HC)” has high optimality if the utility function is cone-

constraints. However, the difference among per protocol in cone-constraints is larger

than the one in cube-constraints because the utility space in cone-constraints is more

complex.

Figure 8 shows the average share (v) per agent in cube-constraints. The number

of shares shows a comparison of memory in several protocols. “(C) DMP (GA)”

increases exponentially. On the other hand, “(A) DMP (SA)” and “(B) DMP (HC)”

reduces the shares compared to “(C) DMP (GA)” because GA searches for more

states than SA and HC. The number of shares in DMP depends on the features
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Figure 8: The number of shares (Cube-constraints)

of the search protocol. Furthermore, “(C) HSP (SA)” and “(D) HSP (HC)” reduce

shares compared to “(A) DMP (SA)”, “(B) DMP (HC)” and “(C) DMP(GA) because

the initial state in the DMP step in HSP has a higher value than the initial state in

DMP since TOL was performed before. Thus, HSP can reduce the shares more than

DMP.

Figure 8 shows the average share (v) per agent in cone-constraints. “(C) DMP

(GA)” increases exponentially if the utility function is cone-constraints. The number

of shares in DMP depends on the features of the search protocol in cone-constraints

situation. Furthermore, “(C) HSP (SA)” and “(D) HSP (HC)” also reduce shares

compared to “(A) DMP (SA)”, “(B) DMP (HC)” and “(C) DMP(GA) in “cone-

constraint situation”. Thus, HSP can reduce the shares more than DMP if the utility

function is cone-constraints. The number of shares in cone-constraints situation is

overall less than the one in cube-constraints situation. This is because that all search
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Figure 9: The number of shares (Cone-constraints)

methods in cone-constraints have higher possibility to reach local optima due to the

utility space’s complexity.

From the above experimental results, HSP can reduce the shares with high opti-

mality.

(6) RELATED WORK

Most previous work on multi-issue negotiation [2, 3, 4] has only addressed lin-

ear utilities. Recently some researchers have been focusing on more complex and

nonlinear utilities.

[15] has explored a range of protocols based on mutation and selection on binary

contracts. This paper does not describe what kind of utility function is used, nor

does he present any experimental analyses, it is unclear whether this strategy enables
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sufficient exploration of utility space.

[1] presents an approach based on constraint relaxation. However, there is no

experimental analysis, and this paper merely presents a small toy problem with 27

contracts.

[17] modeled a negotiation problem as a distributed constraint optimization prob-

lem. This paper claims the proposed algorithm is optimal, but it does not discuss

computational complexity and only provides a single small-scale example.

Based on a simulated-annealing mediator, [12] presented a protocol that was ap-

plied with near-optimal results to medium-sized bilateral negotiations with binary

dependencies. The work presented here is distinguished by demonstrating both scal-

ability and high optimality values for multilateral negotiations and higher order de-

pendencies.

[13, 14] also presented a protocol for multi-issue problems for bilateral negotia-

tions. [18, 19] presented a multi-item and multi-issue negotiation protocol for bilat-

eral negotiations in electronic commerce situations. [5] proposed bilateral multi-issue

negotiations with time constraints, and [22] proposed multi-issue negotiation that em-

ploys a third-party to act as a mediator to guide agents toward equitable solutions.

This framework also employs an agenda that serves as a schedule for the ordering of

issue negotiation. Agendas are very interesting because agents only need to focus on

a few issues.

[9] proposed a checking procedure to mitigate this risk and show that by tuning

this procedure’s parameters, outcome deviation can be controlled. These studies re-

flect interesting viewpoints, but they focused on just bilateral trading or negotiations.

In previous works ([7] etc.), the utility function has only block constraints, not

cone-constraints. The utility function in cone-constraionts is more realistic and com-

plex than these studies. The experiment results in this paper show the performance

22



of some methods in cone-constraints and cube-constraints situation.

(7) CONCLUSION

In this paper, we proposed a nonlinear utility function based on cone-constraints

and proposed the Distributed Mediator Protocol (DMP) that can reach agreements

and completely conceal agent’s utility information and achieve high scalability in util-

ity space. Moreover, we proposed the Hybrid Secure Protocol (HSP) that combines

DMP and Take it or Leave it (TOL) protocol. Experimental results demonstrated

that HSP can reduce memory with high optimality in cone-constraints and cube-

constraints situations.

One future work includes a method to divide the search space depending on agent

power. A protocol that develops the scalability of utility information is also possible

future work. One possible protocol is to break up the agenda of issues.
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