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Abstract. Combinatorial auctions, one of the most popular market mechanisms, have a huge effect on electronic markets and
political strategies. Combinatorial auctions provide suitable mechanisms for efficient allocation of resources to self-interested
attendees. On the other hand, efficient resource allocation is also becoming crucial in many computer systems that should manage
resources efficiently. Considering ubiquitous computing scenarios, the ability to complete an auction within a fine-grained time
period without loss of allocation efficiency is in strong demand. Furthermore, to achieve such scenarios, it is very important to
handle a large number of bids in an auction. In general, the optimal winner determination problem of a combinatorial auction
is NP-hard. Thus, much work focuses on tackling the computational costs for winner determination. In this paper, we show that
our approximation algorithms provide sufficient quality of winners for auctions that have a large number of bids on hard time
constraints. Furthermore, we compare and discuss desirable properties of such approximation algorithms to be embedded in
application systems.
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1. Introduction

Combinatorial auctions [8], one of the most popular
market mechanisms, have a huge effect on electronic
markets and political strategies. For example, Sand-
holm et al. [36] proposed a market using their innova-
tive combinatorial auction algorithms. Combinatorial
auctions provide suitable mechanisms for efficient al-
location of resources to self-interested attendees [8].
Therefore, many works have been done to utilize com-
binatorial auction mechanisms for efficient resource
allocation. For example, the FCC tried to employ com-
binatorial auction mechanisms for assigning spectrums
to companies [28].

On the other hand, efficient resource allocation is
also becoming crucial in many computer systems that
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should manage resources efficiently, and combinato-
rial auction mechanisms are suitable for this situation.
For example, considering a ubiquitous computing sce-
nario, there is typically a limited amount of resources
(sensors, devices, etc.) that may not cover all needs for
all agents. Due to certain reasons (physical limitations,
privacy, etc.), most of the resources cannot be shared
with other agents. Furthermore, agents will use two or
more resources at a time to achieve desirable services
for users. Of course, each agent provides services to its
own user, and the agent may be self-interested.

However, in such ubiquitous computing scenarios,
there is strong demand for completing an auction
within a fine-grained time period without loss of allo-
cation efficiency. In a ubiquitous computing scenario,
the physical location of users may always be changing
and that could be handled by the system. Also, each
user may have multiple goals with different contexts,
and those contexts are also dynamically changing.
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Therefore, resources should be re-allocated in a certain
fine-grained period to keep up with those changes in
a timely manner. For better usability, the time period
of resource reallocation will be 0.1 to several seconds
depending on services provided there. Otherwise, re-
sources will remain assigned to users who no longer
need them while other users are waiting for alloca-
tion.

Also, in the above scenarios, it is very important to
handle a large number of bids in an auction. Consider
that if there are 256 resources and 100 agents, and each
agent has 100 to 200 bids, then there will be 10,000 to
20,000 bids for 256 items in an auction. However, it
has been difficult to complete such a large-scale com-
binatorial auction within a fine-grained time period.

In general, the optimal winner determination prob-
lem of a combinatorial auction is NP-hard [8] for the
number of bids. Thus, much work focuses on tack-
ling the computational costs for winner determination
[8,12,36]. These works basically try to achieve the op-
timal solution in winner determination. Although these
works can be used for attaining approximated solu-
tions and they perform well in certain conditions, there
remains a possibility for further improvements focus-
ing on approximation.

Some works [18,26,43] try to achieve approximate
solutions in winner determination. Lehmann et al. [26]
proposed a greedy approximation algorithm that re-
laxes economic efficiency and proves the truthfulness
in a certain condition. Lehmann et al. rather focused on
elegant theoretical aspects, i.e., giving truthfulness for
an auction mechanism with approximated allocations
of items [26]. However, the performance of [26] is ex-
cellent in that it can successfully handle a very large
number of bids and items in an auction.

Also, the approximation algorithms presented in
[43] and [18] generally perform very well even if the
number of bids is relatively large.

Recently, we proposed a set of extended approxima-
tion algorithms that are based on Lehmann’s approach.
In [14], we presented our preliminary idea and we have
shown our algorithm performs well when the number
of bids is very large. However, there is no detailed eval-
uation of the performance of those algorithms in the
setting of a short time approximation that is needed in
an actual usage scenario of the combinatorial auctions
described above.

In this paper, we show that our approximation algo-
rithms provide a sufficient quality of winners for auc-
tions that have a large number of bids on hard time
constraints. Furthermore, we compare and discuss de-

sirable properties of such approximation algorithms to
be embedded in application systems.

2. Preliminaries

2.1. Combinatorial auction and resource allocation
problem

An auction mechanism is an economic mechanism
for efficient allocations of items to self-interested buy-
ers with agreeable prices. When the auction mecha-
nism is truthful, i.e., it guarantees incentive compat-
ibility, the mechanism enforces the bidders to locate
their bids with true valuations. In such auctions, since
we have an expectation of obtaining bids with true
valuations, we can allocate items to buyers efficiently
even though some buyers may try to cheat the mecha-
nisms out of gaining sufficient incomes from them. For
example, Vickrey proposed an auction mechanism that
has incentive compatibility [38]. That is a basic dif-
ference from ordinary resource allocation mechanisms
that have implicit assumptions of truth-telling buyers.

Combinatorial auction is an auction mechanism that
allows bidders to locate bids for a bundle of items
rather than single item [8]. Combinatorial auction has
been applied for various resource allocation problems.
For example, McMillan et al. reported a trial on an
FCC spectrum auction [28]. Rassenti et al. reported
a mechanism for an airport time slot allocation prob-
lem [32]. Ball et al. discussed applicability of combi-
natorial auctions to airspace system resource alloca-
tions [3]. Caplice et al. proposed a bidding language
for optimization of procurement on freight transporta-
tion services [7]. Estelle et al. proposed a formaliza-
tion on auctioning London Bus Routes [6]. Hohner et
al. presented an experience on procurement auctions at
a software company [17].

However, on emerging applications with such re-
source allocation problems, their problem spaces are
larger, more complex, and much harder to solve com-
pared to previously proposed applications. For exam-
ple, Orthogonal Frequency Division Multiple Access
(OFDMA) technology enables us to use a physically
identical frequency bandwidth as virtually multiplied
channels at the same time, and this causes the channel
allocation problem to become more difficult [42]. Also
some recent wireless technologies allow us to use mul-
tiple channels on the same, or different physical layers
(i.e., WiFi, WiMax, and Bluetooth at the same time)
for attaining both peak speed and robust connectivity
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[29,34]. Furthermore, such resource allocation should
be done for many ordinary users rather than a fixed
limited number of flights or companies. Also the allo-
cation should consider the contexts of users, which are
dynamically changing through the time.

In this paper, to maintain simplicity of discussion,
we only focus on utility-based resource allocation
problems such as [37], rather than generic resource al-
location problems with numerous complex constraints.
The utility-based resource allocation problem is a
problem that aims to maximize the sum of utilities
of users for each allocation period, but does not con-
sider other factors and constraints (i.e., fair allocation
[1,33], security and privacy concerns [41], uncertainty
[39,40], etc.). Combinatorial auction is not only the ap-
proach for resource allocation problems. For example,
Crawford et al. proposed a mechanism for multi-agent
meeting scheduling problem [9] based on Clake Tax
mechanism, and Camorlinga et al. proposed a swarm
intelligence approach for distributed resource alloca-
tion. In this paper, to clarify the focus of discussion, we
focus on solving the problem by using combinatorial
auctions. We also assume private value auction model,
i.e., each utility is private value for each user. There are
studies that does not use private value auctions [19].
The consideration of these complex problem settings
is a future work.

Also, throughout this paper, we only consider auc-
tions that are single-sided, with a single seller and mul-
tiple buyers to maintain simplicity of discussion. It can
be extended to the reverse situation with a single buyer
and multiple sellers, and the two-sided case. The two-
sided case is known as the combinatorial exchange.
In the combinatorial exchange mechanisms, multiple
sellers and multiple buyers are trading on a single trad-
ing mechanism. About this mechanism, the process
of determining winners is almost the same as single-
sided combinatorial auctions. However, it is reported
that the revenue division among sellers can be a prob-
lem. There are a lot of interesting studies on combina-
torial exchange [30]. The consideration and enhance-
ment of support for combinatorial exchange is one of
our future works.

2.2. Winner determination problem

The winner determination problem on combinato-
rial auctions is defined as follows [8]: The set of bid-
ders is denoted by N = 1, . . . , n, and the set of items
by M = {m1, . . . , mk}. |M | = k. Bundle S is a
set of items: S ⊆ M . We denote by vi(S), bidder

i’s valuation of the combinatorial bid for bundle S.
An allocation of the items is described by variables
xi(S) ∈ {0, 1}, where xi(S) = 1 if and only if bidder
i wins bundle S. An allocation, xi(S), is feasible if it
allocates no item more than once,

∑

i∈N

∑

S�j

xi(S) ≤ 1

for all j ∈ M . The winner determination problem is
the problem to maximize total revenue

max
X

∑

i∈N,S⊆M

vi(S)xi(S)

for feasible allocations X � xi(S).1

Even when we only focus on utility-based resource
allocation problems, they force us to solve the win-
ner determination problem with a very hard time con-
straint for achieving fine-grained resource allocation.
Here, we have to consider that, in such resource alloca-
tion procedures, we need to spend much time for pric-
ing and communications for actual resource allocation
protocols. Therefore, we need a fast winner determi-
nation algorithm for auctions with a large number of
bids. In this paper, primarily we focus on solving this
problem, and then discuss other parts of the problem
such as pricing, communication overheads, etc.

2.3. Lehmann’s greedy winner determination

Lehmann’s greedy algorithm [26] is a very simple
but powerful linear algorithm for winner determina-
tion in combinatorial auctions. Here, a bidder declar-
ing < s, a >, with s ⊆ M and a ∈ R+ will be said
to put out a bid b =< s, a >. Two bids b =< s, a >
and b′ =< s′, a′ > conflict if s ∩ s′ �= ∅. The greedy
algorithm can be described as follows. (1) The bids
are sorted by some criterion. The researchers [26] pro-
posed sorting list L by descending average amount per
item. More generally, they proposed sorting L by a cri-
terion of the form a/|s|c for some number c, c ≥ 0,
possibly depending on the number of items, k. (2)
A greedy algorithm generates an allocation. L is the

1Note that in ordinary auction mechanisms, the actual winner’s
payment will not be the same as the price of the placed bid. There-
fore, the actual income of the auctioneer is not the same as the to-
tal revenue calculated here. Since our goal is to compare optimality
of winner determination, we simply use total revenue as the sum of
prices of winner bids.
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sorted list in the first phase. Walk down the list L, ac-
cepting bids if the items demanded are still unallocated
and not conflicted.

In [26], Lehmann et al. argued that c = 1/2 is the
best parameter for approximation when the norm of
worst case performance is considered. Also they have
shown that the mechanism is truthful when single-
minded bidders are assumed and their proposed pric-
ing scheme is used.

Example. Assume there are three items a, b, and c,
and three bidders Alice, Bob, and Charles. Alice
bids 10 for a. Bob bids 20 for {b, c}. Charles bids 18
for {a, b}. We sort the bids by the criterion of the form
a/

√
|s|. Alice’s bid is calculated as 10/

√
1 = 10.

Bob’s bid is calculated as 20/
√

2 = 14 (approxi-
mately). Charles’s bid is calculated as 18/

√
2 =

13 (approximately). The sorted list is now Bob’s bid
< {b, c}, 20 >, Charles’s bid < {a, b}, 18 >, and
Alice’s bid < {a}, 10 >. The algorithm walks down
the list. At first, Bob wins {b, c} for 20. Then, Charles
cannot get the item because his bid conflicts with
Bob’s bid. Finally, Alice gets {a} for 10.

2.4. Zurel’s approximation

Zurel and Nisan [43] proposed a very competitive
approximate winner determination algorithm for com-
binatorial auctions. The main idea is a combination of
approximated positive linear program algorithms for
determining initial allocation and stepwise updates of
allocations.

In the approximated linear program phase, a vari-
ant of a primal-dual approximation algorithm is used.
Unlike ordinary methods, a scaled price pi for each
item i is maintained. Finally, a fractional allocation
0 ≤ Ai ≤ 1 for every bid and an item price pi for ev-
ery item are assigned. And then, the bids are sorted by
the descending order of the value vj/

∑
i∈Sj

Pi for bid
price vj of the bundle Sj , and then greedy allocation
of bids is made for attaining initial allocation.

After initial allocation is attained, a kind of stepwise
update is made. Here, a non-winner bid is selected and
put at the top of the sorted bid list attained in the lin-
ear program phase. And then new greedy allocation is
calculated. When the total revenue of new allocation
is larger than before, the new sorted bid list is used
instead of the last one. This process is repeated until
no more improvements are possible. The details of the
algorithm are shown in [43].

2.5. Casanova

Hoos [18] proposed that a generic random walk SAT
solver may perform well for approximation of combi-
natorial auctions. In [18], the Casanova algorithm is
proposed for the purpose. It is based on scoring each
search state using the revenue-per-item of the corre-
sponding allocation. Casanova starts with an empty al-
location. At each step, the highest bid is selected in
probability 1 − wp or a bid is randomly selected in
probability wp. Note that the age of the bid is con-
sidered in probability np to avoid doing a short loop.
Also a soft restart strategy is used. The algorithm stops
when the search process exceeds maxSteps or the soft
restart occurs and the restart count exceeds maxTri-
als.

3. Enhanced approximation algorithms

3.1. Hill-climbing search

In [14], we have shown that the hill-climbing ap-
proach performs well when an auction has a massively
large number of bids. In this section, we summarize
our proposed algorithms.

Lehmann’s greedy winner determination could suc-
ceed in specifying the lower bound of the optimality
in its allocation [26]. The straightforward extension of
the greedy algorithm is to construct a local search algo-
rithm that continuously updates the allocation so that
the optimality is increased. Intuitively, one allocation
corresponds to one state of a local search.

The inputs are Alloc and L. L is the bid list of an
auction. Alloc is the initial greedy allocation of items
for the bid list.

1: function LocalSearch(Alloc, L)

2: RemainBids:= L - Alloc;

3: for each b ∈ RemainBids as sorted order

4: if b conflicts Alloc then

5: Conflicted:=Alloc - consistentBids({b}, Alloc);

6: NewAlloc:= Alloc - Conflicted + {b};

7: ConsBids:=

8: consistentBids(NewAlloc, RemainBids);

9: NewAlloc:=NewAlloc+ConsBids;

10: if price(Alloc) < price(NewAlloc) then

11: return LocalSearch(NewAlloc,L);

12: end for each

13: return Alloc



N. Fukuta and T. Ito / Fine-grained efficient resource allocation using approximated combinatorial auctions 47

The function consistentBids finds consistent bids
for the set NewAllocation by walking down the list
RemainBids. Here, a new inserted bid will wipe out
some bids that conflict with the inserted bid. So there
will be free items to allocate after the insertion. The
function consistentBids tries to insert the other bids
for selling as many of the higher value items as possi-
ble.

Example. Assume there are five items a, b, c, d, and e,
and there are six bids, < {a, b, c}, 30 >, < {a}, 15 >,
< {c}, 13 >, < {d, e}, 15 >, < {a, c}, 14 >, < {b},
8 >. We can calculate the values of Lehmann’s crite-
rion a/

√
|s| as 17.6, 15, 13, 10.7, 10, and 8, respec-

tively. In this case, the initial allocation is Lehmann’s
greedy allocation < {a, b, c}, 30 >, < {d, e}, 15 >
and the total revenue is 45. Here, the remaining list is
< {a}, 15 >, < {c}, 13 >, < {a, c}, 14 >, < {b},
8 >. In this algorithm, we pick < {a}, 15 > since it is
the top of the remaining list. Then we insert < {a},
15 > into the allocation and remove < {a, b, c}, 30 >.
The allocation is now < {a}, 15 >, < {d, e}, 15 >.
We then try to insert the other bids that do not con-
flict with the allocation. Then, the allocation becomes
< {a}, 15 >, < {b}, 8 >, < {c}, 13 >, < {d, e}, 15 >.
The total revenue is 51, and is increased. Thus, the al-
location is updated to it. Our local algorithm continues
to update the allocation until there is no allocation that
has greater revenue. This could improve the revenue
that Lehmann’s greedy allocation can achieve.

3.2. Local search for multiple values of the sorting
criterion c

The optimality of allocations got by Lehmann’s al-
gorithm (and the following hill-climbing) deeply de-
pends on which value was set to the bid sorting cri-
terion c. Again, in [26], Lehmann et al. argued that
c = 1/2 is the best parameter for approximation when
the norm of the worst case performance is considered.
However, the optimal values for each auction are var-
ied from 0 to 1 even if the number of items is constant.
Here, we use an enhancement for our local search al-
gorithm with parallel search for the sorting criterion
c. In the algorithm, the value of c for Lehmann’s al-
gorithm is selected from a pre-defined list. It is rea-
sonable to select c from neighbors of 1/2, namely,
C = {0.0, 0.1, . . . , 1.0}. The results are aggregated
and the best one (that has the highest revenue) is se-
lected as the final result.

3.3. Simulated annealing search

We also prepared a small extension of the proposed
algorithm to the simulated annealing local search.
The algorithm is a combination of the presented hill-
climbing approach and a random search based on the
standard simulated annealing algorithm. We use a pa-
rameter that represents the temperature. The temper-
ature is set at a high value at the beginning and con-
tinuously decreased until it reaches 0. For each cycle,
a neighbor is randomly selected and its value may be
less than the current value in some cases. Even in such
a case, if a probability value based on the temperature
is larger than 0, the state is moved to the new allocation
that has less value. This could make us get off the local
minimum. Also, the algorithm automatically restarts
when it reaches the local minimum. It repeats until the
highest result is not updated in the last k restarts. Here,
we use k = 5 for our experiments. We prepared this al-
gorithm only for investigating how random search ca-
pability will improve the performance. Note that the
proposed SA search may not satisfy our proposed fea-
tures discussed later.

4. Evaluation

4.1. Experiment settings

We implemented our algorithms in a C program for
the following experiments. We also implemented the
Casanova algorithm in a C program. However, for the
following experiments, we used Zurel’s C++ based im-
plementation that is shown in [43].

The experiments were done with the above imple-
mentations to examine the performance differences
among algorithms. The programs were employed on a
Mac with Mac OS X 10.4, CoreDuo 2.0GHz CPU, and
2GBytes of memory. Thus, actual computation time
will be much smaller when we employ parallel proces-
sor systems in a distributed execution environment. We
leave this for future work.

We conducted several experiments. In each experi-
ment, we compared the following search algorithms.
greedy(C=0.5) uses Lehmann’s greedy allocation al-
gorithm with parameter (c = 0.5). greedy-all uses
the best results of Lehmann’s greedy allocation algo-
rithm with parameter (0 ≤ c ≤ 1 in 0.1 steps). This
is a simple algorithm but Lehmann et al. did not men-
tion it. HC(c=0.5) uses a local search in which the ini-
tial allocation is Lehmann’s allocation with c = 0.5
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greedy(C=0.5) greedy-all HC(C=0.5) HC-all SA Zurel Casanova
average 0.9351 0.9450 0.9832 0.9868 0.9921 0.9934 0.9960

Fig. 1. Optimality on deVries’ dataset.

and conducts the hill-climbing search shown in the
previous section. HC-all uses the best results of the
hill-climbing search with parameter (0 ≤ c ≤ 1 in
0.1 steps). SA uses the simulated annealing algorithm.
Also, we denote the Casanova algorithm as Casanova
and Zurel’s algorithm as Zurel.

In the following experiments, we used 0.2 for the
epsilon value of Zurel’s algorithm in our experiments.
This value appears in [43]. Also, we used 0.5 for np
and 0.15 for wp on Casanova, which appear in [18].
Note that we set maxTrial to 1 but maxSteps to ten
times the number of bids in the auction.

4.2. Evaluation on basic auction dataset

In [43], the researchers evaluated the performance
of their presented algorithm with the data set pre-
sented in [10], compared with CPLEX and other exist-
ing implementations. Figure 1 shows the comparison
of our algorithms, Casanova, and Zurel’s algorithm
with the dataset provided in [10]. This dataset con-
tains 2240 auctions with optimal values, ranging from
25 to 40 items and from 50 to 2000 bids. Though the

dataset has more than 100 different auction settings,
we made a plot of average optimality on all those set-
tings. The average optimality of each algorithm is also
shown.

Since problems in the dataset have relatively small
size of bids and items, we omitted the execution time
since all algorithms run in very short time. This com-
parison shows that the performance of Casanova is
better than Zurel, our SA, and our HC-all follows
them. This is because we can spend enough time for
each auction problem so that generic random search
algorithm performs well. The performance of our al-
gorithms is competitive but there is little advantage on
this dataset.

We conducted detailed comparisons with common
datasets from CATS benchmark [27]. Compared to de-
Vries’ dataset shown in [10], the CATS benchmark is
very common and it contains more complex and larger
datasets.

Table 1 shows the comparison of our algorithms,
Casanova, and Zurel’s algorithm with a dataset pro-
vided in the CATS benchmark [27]. The dataset has
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Table 1

Optimality on CATS-VARSIZE dataset

arbitrary L2 L3 L4 L6 L7 matching regions scheduling average

greedy(C=0.5) 0.8641 0.9968 0.8037 0.9076 0.9403 0.8652 0.9721 0.8734 0.9143 0.9042

greedy-all 0.8973 1.0000 0.8359 0.9355 0.9683 0.9010 0.9749 0.9028 0.9664 0.9314

HC(C=0.5) 0.9485 1.0000 0.9433 0.9611 0.9902 0.9822 0.9957 0.9703 0.9826 0.9749

HC-all 0.9750 1.0000 0.9663 0.9807 0.9957 0.9920 0.9967 0.9857 0.9975 0.9877

SA 0.9768 1.0000 0.9756 0.9813 0.9950 0.9921 0.9975 0.9872 0.9969 0.9892

Zurel 0.9671 0.9998 0.9571 0.9811 0.9977 0.9838 0.9994 0.9836 0.9909 0.9845

Casanova 0.9567 1.0000 0.9741 0.96457 0.9753 0.9905 0.9946 0.9711 0.9979 0.9805

numerous auctions with optimal values in several dis-
tributions. Here we used ‘varsize’ which contains a to-
tal of 7452 auctions with reliable optimal values in 9
different distributions.2 Numbers of items range from
40 to 400 and numbers of bids range from 50 to 2000.
The name of each distribution is referred from [27].

Following is a summary of bid distributions used
in this paper. For legacy distributions (i.e., L2, L3,
L4, L6, and L7), the bid generation algorithm is
defined by three parts: number of items in a bid,
which items to be chosen, and price offer for the
bundle. For ‘number of items’, one of the follow-
ing approaches is used: Uniform (Uniformly dis-
tributed on [1, num_items]), Normal (Normally dis-
tributed with μ = μ_items and σ = σ_items), Con-
stant (Fixed at constant_items), Decay (Starting with
1, repeatedly increment the size of the bundle un-
til rand (0,1) exceeds α), Binomial (Request n items
with probability pn(1 − p)num_items−n), and Expo-
nential (Request n items with probability C · e−n/q).
For ‘which items’, only Random (choose n items ran-
domly) is used. For ‘price offer’, one of the follow-
ing approaches is used: Fixed Random (Uniform on
[low_fixed,hi_fixed]), and Linear Random (Uni-
form on [low_linearly ·n,hi_linearly ·n] for number
of items n). For details about datasets, see [27].

L2 Number of items in a bid: uniform, price of-
fer: linearly random with low_linearly = 0,
hi_linearly = 1 (when bid price is defined
as a float value), or low_linearly = 500,
hi_linearly = 1500 (when bid price is defined

2Since some of the original data seems corrupted or failed to ob-
tain optimal values, we excluded such auction problems from our
dataset. Also, we excluded a whole dataset of a specific bid distri-
bution when the number of valid optimal values is smaller than the
other half of the data. The original dataset provides optimal values of
auction problems by two independent methods, CASS and CPLEX.
Therefore, it is easy to find out such corrupted data from the dataset.

as an integer value). This is also called a ‘Sand-
holm uniform linearly random’ or an ‘Andersson
uniform linearly random’ dataset.

L3 Number of items in a bid: constant with con-
stant_items = 3, price offer: fixed random
with low_fixed = 0, hi_fixed = 1. This is
also called a ‘Sandholm constant fixed random’
dataset.

L4 Number of items in a bid: decay with α = 0.55,
price offer: linearly random with low_linearly=
0, hi_linearly = 1 (when bid price is de-
fined as a float value), or low_linearly = 1,
hi_linearly = 1000 (when bid price is defined
as an integer value). This is also called a ‘Sand-
holm decay linearly random’, or an ‘Andersson
decay linearly random’ dataset.

L6 Number of items in a bid: exponential with q = 5,
price offer: linearly random with low_linearly=
0.5, hi_linearly = 1.5 (when bid price is de-
fined as a float value), or low_linearly = 500,
hi_linearly = 1500 (when bid price is defined
as an integer value).

L7 Number of items in a bid: binomial with p = 0.2,
price offer: linearly random with low_linearly=
0.5, hi_linearly = 1.5 (when bid price is de-
fined as a float value), or low_linearly = 500,
hi_linearly = 1500 (when bid price is defined
as an integer value).

arbitrary This bid distribution considers comple-
mentary (arbitrary) relationships between items.
The default parameters are as follows: max_i-
tem_value = 100, additional_item = 0.9,
max_substitutable_bids = 5, additivity =
0.2, deviation = 0.5, budget_factor = 1.5,
resale_factor = 0.5, and S(n) = n1+additivity.
For details, see [27].

regions This bid distribution considers the adjacency
problem. In this distribution, a real estate graph
in 2 dimensions is generated, and then bids are
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Table 2

Time performance on 20,000 bids-256 items

L2 L3 L4 L6 L7 average

greedy(c=0.5) 1.0002 (23.0) 0.9639 (19.0) 0.9417 (23.0) 0.9389 (23.4) 0.7403 (22.1) 0.9170 (22.1)
greedy-3-seq 1.0003 (69.1) 0.9639 (59.2) 0.9999 (72.9) 0.9965 (67.8) 0.7541 (66.8) 0.9429 (67.2)
greedy-3-para 1.0003 (26.4) 0.9639 (20.9) 0.9999 (28.4) 0.9965 (26.0) 0.7541 (25.5) 0.9429 (25.4)

HC(c=0.5)-100ms 1.0004 (100) 0.9741 (100) 0.9576 (100) 0.9533 (100) 0.8260 (100) 0.9423 (100)
HC-3-seq-100ms 1.0004 (100) 0.9692 (100) 1.0000 (100) 0.9966 (100) 0.8287 (100) 0.9590 (100)
HC-3-para-100ms 1.0004 (100) 0.9743 (100) 1.0001 (100) 0.9969 (100) 0.9423 (100) 0.9828 (100)

HC(c=0.5)-1000ms 1.0004 (1000) 0.9856 (1000) 0.9771 (1000) 0.9646 (1000) 1.0157 (1000) 0.9887 (1000)
HC-3-seq-1000ms 1.0004 (1000) 0.9804 (1000) 1.0003 (1000) 0.9976 (1000) 1.0086 (1000) 0.9975 (1000)
HC-3-para-1000ms 1.0004 (1000) 0.9856 (1000) 1.0006 (1000) 0.9987 (1000) 1.0240 (1000) 1.0019 (1000)

Zurel-1st 0.5710 (11040) 0.9690 (537) 0.9983 (2075) 0.9928 (1715) 0.6015 (1796) 0.8265 (3433)
Zurel 1.0000 (13837) 1.0000 (890) 1.0000 (4581) 1.0000 (4324) 1.0000 (3720) 1.0000 (5470)

casanova-10ms 0.2583 (10) 0.0069 (10) 0.0105 (10) 0.0202 (10) 0.2577 (10) 0.0632 (10)
casanova-100ms 0.2583 (100) 0.0069 (100) 0.0105 (100) 0.0202 (100) 0.2577 (100) 0.1107 (100)

casanova-1000ms 0.5357 (1000) 0.1208 (1000) 0.0861 (1000) 0.1486 (1000) 0.7614 (1000) 0.3305 (1000)
(each value in () is time in milliseconds)

generated by combinations of regions considering
proximity. The default parameters are as follows:
three_prog = 1.0, additional_neighbor = 0.2,
max_item_value = 100, max_substituta-
ble_bids = 5, additional_location = 0.9,
jump_prob = 0.05, additivity = 0.2, devia-
tion = 0.5, budget_factor = 1.5, resale_fac-
tor = 0.5, and S(n) = n1+additivity. For details,
see [27].

scheduling This bid distribution is based on a dis-
tributed job-shop scheduling with one resource.
The default parameters are as follows: deviation=
0.5, prob_additional_deadline = 0.9, additivi-
ty = 0.2, and max_length = 10. For details, see
[27].

Here, we can see that the performances of HC-all
and SA are better than Zurel on arbitrary, L2, L3, L7,
regions, and scheduling. Others are nearly equal to
Zurel’s. The performance of Casanova is nearly equal
to or less than HC (C=0.5) excluding L3 and schedul-
ing.

Note that those differences come from the differ-
ences of the termination condition on each algorithm.
In particular, Casanova spent much more time com-
pared with the other two algorithms. However, we do
not show the time performance since the total execu-
tion time is relatively too small to be compared.

4.3. Evaluation on large auction dataset

The CATS common datasets we used in Section 4.2
have a relatively smaller number of bids than we
expected. We conducted additional experiments with
much greater numbers of bids. We prepared additional

datasets having 20,000 non-dominated bids in an auc-
tion. The datasets were produced by CATS [27] with
default parameters in 5 different distributions. In the
datasets, we prepared 100 trials for each distribution.
Each trial is an auction problem with 256 items and
20,000 bids.3

Table 2 shows the experimental result on the datasets
with 20,000 bids in an auction focused on execution
time of approximation. Due to the difficulty of attain-
ing optimal values, we normalized all values as Zurel’s
results equaling 1 as follows.

Let A be a set of algorithms, z ∈ A be the Zurel’s
approximation algorithm, L be a dataset generated for
this experiment, and revenuea(p) such that a ∈ A be
the revenue obtained by algorithm a for a problem p
such that p ∈ L, the average revenue ratio ratioAa(L)
for algorithm a ∈ A for dataset L is defined as follows:

ratioAa(L) =

∑
p∈L revenuea(p)

∑
p∈L revenuez(p)

Here, we use ratioAa(L) for our comparison of algo-
rithms.

We prepared cut-off results for Casanova and HC.
For example, casanova-10ms denotes the result of

3Due to the difficulty of preparing the dataset, we only prepared 5
distributions. Producing a dataset with other distributions is difficult
in a feasible timeframe when we need non-dominated bids in each
auction problem. Also, we omit L8 since this distribution needs a
set of parameters for preparing the valuation of bids, but there is no
common method to set such parameters. The distributions do not al-
ways reflect a certain situation for a specific resource allocation ap-
plication scenario. For more details about the bid generation prob-
lem, see [27]. A preliminary result of this experiment was shown in
[13].
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Table 3

Time performance on 100,000 bids-256 items

L2 L3 L4 L6 L7 average

greedy-3 1.1098 (129.9) 0.9836 (132.4) 1.0003 (131.9) 1.0009 (130.7) 0.8688 (130.9) 0.9927 (131.2)
HC-3-para-333ms 1.1098 (333) 0.9859 (333) 1.0003 (333) 1.0009 (333) 0.9395 (333) 1.0073 (333)

HC-3-para-1000ms 1.1098 (1000) 0.9880 (1000) 1.0003 (1000) 1.0010 (1000) 0.9814 (1000) 1.0161 (1000)
zurel-1st 0.8971 (74943) 0.9827 (2257) 0.9998 (5345) 0.9987 (4707) 0.7086 (8688) 0.9174 (19188)

Zurel 1.0000 (91100) 1.0000 (6036) 1.0000 (30568) 1.0000 (44255) 1.0000 (17691) 1.0000 (37930)
casanova-130ms 0.3031 (130) 0.0061 (130) 0.0117 (130) 0.0182 (130) 0.2246 (130) 0.1127 (130)
casanova-333ms 0.3506 (333) 0.0379 (333) 0.0328 (333) 0.0673 (333) 0.7536 (333) 0.2484 (333)
casanova-1000ms 0.4954 (1000) 0.1176 (1000) 0.0946 (1000) 0.1605 (1000) 0.7832 (1000) 0.3303 (1000)

(each value in () is time in milliseconds)

Casanova within 10 milliseconds. Here, for faster ap-
proximation, we used greedy-3 and HC-3 instead of
greedy-all and HC-all. greedy-3 uses the best re-
sults of Lehmann’s greedy allocation algorithm with
parameter (0 ≤ c ≤ 1 in 0.5 steps). HC-3 uses the
best results of the hill-climbing search with parameter
(0 ≤ c ≤ 1 in 0.5 steps). Also, we prepared a vari-
ant of our algorithm that has a suffix of -seq or -para.
The suffix -seq denotes the algorithm is completely
executed in a sequence that is equal to one that can
be executed on a single CPU computer. For example,
greedy-3-seq denotes that the execution time is just
the sum of execution times of three threads. The suf-
fix -para denotes the algorithm is completely executed
in a parallel manner, and the three independent threads
are completely executed in parallel. Here, we used the
ideal value for -para since our computer has only two
cores in the CPU. The actual execution performance
will be between -seq and -para. Also, we denote the
initial performance of Zurel’s algorithm as Zurel-1st.
Here, Zurel-1st is the result at the end of its first phase
and no winners will be approximately assigned before
it. Note that we did not include results of SA, since
it did not produce comparable results because of its
highly random behavior on start-up.

On most distributions in Table 2, Zurel-1st takes
more than 1 second but the obtained ratioA is lower
than greedy-3-seq. Furthermore, the average ratioA
of HC-3-para-1000ms is higher than Zurel while its
computation time is less than both Zurel and Zurel-
1st.

Table 3 shows the experimental result on the dataset
with 100,000 bids in an auction focused on the early
anytime performance. While HC-3 and Zurel’s algo-
rithm are competitive in Table 2, it is clear that our pro-
posed HC-3 outperforms Zurel’s algorithm in any time
performance. Note that the time needed to attain ini-
tial allocations increased dramatically (approx. 2 times
in L3 to over 7 times in L7) when the number of bids

becomes five times larger than that of Table 2. How-
ever, our HC-3-para-1000ms only takes the same ex-
ecution time (i.e., 1000 msec) but its average ratioA
is higher than Zurel. Note that the HC-3-para-333ms
has still higher ratioA value than Zurel while its aver-
age computation time is 100 times less. We argue that
our algorithm has an advantage when the number of
bids increases.

The total computation time of Zurel’s algorithm is
shorter in a typical case when the numbers of bids are
ranging within the size of data we used in this pa-
per. This is an excellent advantage of Zurel’s algo-
rithm and we do not argue our algorithm outperforms
Zurel’s when the finally attained approximated alloca-
tions are important. However, our algorithms have im-
portant characteristics that Zurel’s algorithm does not
have. We will discuss the importance of these charac-
teristics in Section 5.

4.4. Detailed analysis on 20k-256 dataset

In this section, we provide detailed analysis for the
results in each bid distribution on the dataset with
20,000 bids and 256 items.

Figure 2 shows the average approximation curve for
the HC-3-para algorithm. Values of the vertical axis
denote ratioA we defined in Section 4.3. We plotted
average anytime approximation performance in each
distribution from the start to 1000 msec. Here, we can
see that the approximation for the dataset based on
L7 distribution is very hard to solve in a short time.
Actually, L7 is dominating other distributions to ob-
tain higher average revenues for all distributions. The
dataset on L3 distribution is a bit hard for the HC-3-
para algorithm since it increases slowly but does not
reach 1 at 1000 msec. The other three distributions are
rather easy for simple greedy approximation.

Here, we provide more detailed analysis for each
distribution in the following.
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Fig. 2. Average approximation curve of HC-3-para on 20,000 bids-256 items.

4.4.1. Detailed analysis on L2
Auction problems based on this distribution are rela-

tively easier to approximate than others. Typically, one
to a few winners will be found in a problem.

Figure 3 shows a plot of approximation results for
all auction problems in the dataset based on L2 dis-
tribution with 20,000 bids and 256 items. In Fig. 3,
we plotted the total revenue for 5 algorithm set-
tings: greedy-3, HC(C=0.5)-1000ms, HC-3-para-
1000ms, Zurel-1st, and Zurel.

In most problems, approximated total revenues are
almost 256,000, and the values are stable and not
distributed very much among problems. Here, only
Zurel-1st obtained lower revenues and Zurel obtained
slightly lower revenues than others. This distribution is
hard for Zurel’s algorithm, since the generated auction
problems may contain many errors that cause worse
performance and slower convergence speed in its ap-
proximated linear programming phase.

4.4.2. Detailed analysis on L3
Auction problems based on this distribution are a bit

tricky since a bid only has exactly three items in the
bundle. Typically, about 85 final winners will be found
in a problem and the optimal revenue could be varied.

Figure 4 shows a plot of approximation results for
all auction problems in the dataset based on L3 distri-
bution with 20,000 bids and 256 items. In Fig. 4, we
plotted the total revenue for 5 algorithm settings that
are the same as Fig. 3.

Approximated total revenues are distributed from
79,000 to 82,000. Here, Zurel obtains the best re-
sults in many cases and HC-3-para-1000ms obtains
slightly lower ones than Zurel. In this distribution,
there is no advantage to searching for different bid
weightings since there are only bids that have exactly
3 items. Therefore, in all cases, revenues obtained
by HC-3-para-1000ms and HC(C=0.5)-1000ms are
exactly the same. However, the obtained results of
HC-3-para-1000ms are still competitive with Zurel.
For Zurel’s algorithm, convergence speed is typically
faster than other distributions on its approximated lin-
ear programming phase.

4.4.3. Detailed analysis on L4
Auction problems based on this distribution are used

so often since the bid generation algorithm is simple
but the generated problems look very realistic. Typi-
cally, a few dozen winners will be found in each prob-
lem.
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Fig. 3. All revenue plot on 20,000 bids-256 items (L2).

Fig. 4. All revenue plot on 20,000 bids-256 items (L3).
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Fig. 5. All revenue plot on 20,000 bids-256 items (L4).

Figure 5 shows a plot of approximation results for
all auction problems in the dataset based on L4 distri-
bution with 20,000 bids and 256 items. In Fig. 5, we
plotted the total revenue for 5 algorithm settings that
are the same as Fig. 3.

Approximated total revenues are stable and num-
ber almost 255,000. Here, greedy-3 obtains good
revenues, and the results of Zurel and HC-3-para-
1000ms are slightly higher than greedy-3. However,
HC(C=0.5)-1000ms obtains much worse results in
all cases. This shows our parallel search for different
bid weighting strategy has a certain advantage. Fur-
thermore, we think this is also a big reason that some
researchers have underestimated the performance of
this simple greedy-with-hill-climbing approach in past
research.

4.4.4. Detailed analysis on L6
Auction problems based on this distribution are sim-

ilar to L4 but a little difficult to approximate. Typically,
several tens of winners will be found at once in a prob-
lem.

Figure 6 shows a plot of approximation results for
all auction problems in the dataset based on L6 distri-
bution with 20,000 bids and 256 items. In Fig. 6, we

plotted the total revenue for 5 algorithm settings that
are the same as in Fig. 3.

Approximated total revenues are around 252,000.
Here, greedy-3 obtains good revenues, and the re-
sults of HC-3-para-1000ms are slightly higher than
greedy-3. The results of Zurel are sometimes slightly
better than HC-3-para-1000ms, but they are not
largely different. Similar to L4, HC(C=0.5)-1000ms
obtains much worse results in all cases. This shows our
parallel search for different bid weighting strategy has
a certain advantage.

Also notice that, although the average approxima-
tion result is slightly below 1.0 for HC-3 at 1000msec,
it took less computation time than Zurel-1st. There-
fore the approximation speed is still faster than Zurel-
1st when we consider a condition with a hard time
constraint.

4.4.5. Detailed analysis on L7
Auction problems based on this distribution are very

hard to approximate in what we used here. Typically,
a few winners will be found in a problem but none of
them can be found in a quick greedy approximation.
Rather, it is very important to find out good combina-
tions of bids to get higher revenues.
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Fig. 6. All revenue plot on 20,000 bids-256 items (L6).

Figure 7 shows a plot of approximation results for
all auction problems in the dataset based on L7 distri-
bution with 20,000 bids and 256 items. In Fig. 7, we
plotted the total revenue for 5 algorithm settings that
are the same as in Fig. 3.

Approximated total revenues are around 100,000,
but they are varied. Here, neither greedy-3 nor Zurel-
1st could obtain good revenues. The results of HC-
3-para-1000ms are constantly higher than greedy-3.
Those problems are hard for simple greedy approxi-
mation, and therefore we employed our HC-3 to over-
come this issue. The results of Zurel are sometimes
worse than HC-3-para-1000ms. Although Zurel and
HC-3-para-1000ms are not largely different in many
cases, in some cases the results of Zurel are about 10
percent worse in total revenue, and this makes a clear
difference from HC-3-para-1000ms on averaged per-
formance.

5. Discussion

5.1. Winner price monotonicity

In real world auctions, often we open the winners
and their bidding prices after the auction is finished.

When we employ an approximated algorithm for win-
ner determination, a loser who might be a winner in
the optimal allocation could know the winner’s bidding
price in an approximate allocation after the auction fin-
ishes. In some cases, this loser had placed a higher
price than the winner’s for the same or a subset of the
bundle. This would result in unacceptable allocations
for bidders.

We believe that the above issue should be consid-
ered to make our mechanism acceptable by partici-
pants in the real world. Therefore, we propose two
desirable properties, Winner-Price-Monotonicity and
Weak-Winner-Price-Monotonicity to avoid unaccept-
able allocations.

Definition 1 (Winner-Price-Monotonicity: WPM).
For two non-empty bundles B and B′, if B ⊆ B′ and
vi(B) > vj(B′), then j must not win bundle B′.

Definition 2 (Weak-Winner-Price-Monotonicity:
Weak-WPM). For non-empty bundle B, if vi(B) >
vj(B), then j must not win bundle B.

We have the following propositions.

Proposition 1. Our proposed winner determination
algorithms, except for the simulated annealing-based
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Fig. 7. All revenue plot on 20,000 bids-256 items (L7).

algorithm, produce allocation Wfin that satisfies
WPM when the algorithm reaches an end.

Proposition 2. In terms of any allocations that are
achieved during computation (as an anytime algo-
rithm), our proposed winner determination algorithms,
except for the simulated annealing-based algorithm,
satisfy Weak-WPM.

It is a big merit to guarantee WPM and/or Weak-
WPM at the algorithm level when we use it where
slightly different combinatorial auctions are conducted
iteratively. It seems easy to satisfy WPM and/or Weak-
WPM by using any approximated winner determina-
tion algorithms by adding a pre-processing that re-
moves all dominated bids from the bidset before start-
ing the approximation. However, we should consider
its computational overhead. For simplicity, consider a
case B = B′ instead of B ⊆ B′. Let n be the number
of items and m be the number of items in an auction.
When m is very small, it is easy to look up the high-
est bids of each bundle by using a hash algorithm. In
this case, the computational order is O(n). However, it
consumes a great deal of memory (of course it can be
smaller than 2m but at least additional O(n) of work-
ing space), and it is actually very difficult to determine

good hash functions for a smaller hash table size with-
out loss of computational speed. It is a serious problem
when the memory is almost completely used up for
storing the data of a large number of bids. Sometimes
its computational order might reach O(n2), which is
greater than that of typical good approximation al-
gorithms. For example, the computational order of
Lehmann’s greedy algorithm is O(n log n) when we
use one of the O(n log n) sorting algorithms on it. Fur-
thermore, when we consider the deletion of a bid, we
have to determine the highest price bid that has been
made obsolete by the deleted bid, or recalculate such
pre-processing for all bids again. Considering a case
B ⊆ B′ will make the problem more difficult.

5.2. Requirements for acceptable approximation

Concerning the actual application system imple-
mentation using approximated winner determination,
important desirable properties should be retained but
are not pointed out by other papers, including the time
required to attain initial approximated allocations. Ta-
ble 4 summarizes characteristics of five algorithms:
our HC-3, our SA extension, Zurel, Casanova, and
Lehmann’s greedy algorithm.
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Table 4

Comparison of algorithms

HC-3 Zurel’s Casanova Lehmann’s SA

Peak Optimality High Very High Very High Good Very High
Initial Response Time Fast Slow Fast Fast Fast

Short Time Approximation High N/A Low Good High
N. of Parameters 0 1 5 0 2

Monotonicity No No No Yes No
Winner Price Monotonicity Yes (not proven) No Yes No

Peak optimality means how the optimality grows
when we have enough time for computation. Typically,
this property has much weight for ordinary evalua-
tion. Here, Zurel, Casanova, and our SA give excel-
lent optimality compared with the others. Of course,
using other algorithms that can obtain optimal solu-
tions is best for this purpose. However, the gaps among
them are very small (less than 5 percent), excluding
Lehmann’s approach. Also, the result is varied for dis-
tributions of bids. There is no one perfect approxima-
tion algorithm for all distributions of bids. In this pa-
per, we did not focus much on this point. Rather, we
focused on providing acceptable solutions within a re-
alistic time period.

Response time for initial allocation is an important
issue, especially for real-time systems. A case exists
where we spent an unexpectedly long time attaining an
initial allocation even if the approximation algorithm
was an anytime algorithm. In particular, Zurel’s algo-
rithm took much more time to attain the initial allo-
cation when the number of bids got larger for certain
bid distributions. Thus we demonstrated that our algo-
rithm outperforms the other approaches in attaining an
initial allocation for these bid distributions.

Optimality in short-time approximation is also an
essential issue when we handle a large number of bids
in an auction. On the aspect of initial response time,
Casanova is also sufficient. However, the quality of
the initial approximation is very low compared with
HC-3 and Lehmann’s greedy approach. We demon-
strated that our algorithm performs very well in short-
time (e.g. less than 1000 msec) approximation, within
the time that is shorter than attaining the initial allo-
cation on Zurel’s algorithm. Possibility of extremely
short time winner approximation is useful since it en-
ables the system to utilize much time for pricing and
to have a margin for communication overheads in al-
location protocols. Therefore we used one second for
the time limit of computation.

Concerning the above issue, application developers
must know which values should be set for several pa-

rameters used in the algorithm. In general, predicting
appropriate parameters for an algorithm is very diffi-
cult before running and testing an actual system that
uses it. Our algorithm does not force developers to tune
a number of parameters without a loss of performance.

Of course, monotonicity is an essential property for
achieving a truthful auction mechanism. Here, only
Lehmann’s algorithm satisfies monotonicity. None of
the other approximation algorithms satisfies mono-
tonicity.4 Rather, we argue that it is important to ana-
lyze how the approximated allocations are acceptable
for the actual users of the system. As mentioned in
the last section, our algorithms (excluding SA) satisfy
WPM and Weak-WPM to avoid unacceptable alloca-
tions that can be noticed by other bidders. A discussion
about various monotonicity and truthfulness is shown
in [24]. However, our proposed WPM and Weak-WPM
are prepared to show acceptability of allocations in an
auction.

For incentive compatible auction mechanisms, com-
petitive analysis has been done [4,22]. Competitive
analysis is a theoretical analysis about relationships
between actual social efficiency of allocations (e.g.,
the sum of winners’ valuations) and optimal alloca-
tions. Let B be a set of all bids, EA(B) be the sum
of valuations for the actual allocations for B, and
Eopt(B) be the sum of valuations for the optimal allo-
cations for B, respectively. Here, c-competitive means
that it is guaranteed for every auction B, c · EA(B) ≥
Eopt(B) [22].

Since our proposed approximation might not make
the auction incentive compatible, those analyses can-
not be directly applied to our approach. Furthermore,
in our approach, we allow the algorithm to have time
limit for computation. There is a possibility that the
hill-climbing search does not improve allocations that
are obtained by Lehmann’s greedy approach. When we
could assume single-minded bidders and the all val-

4A counter-example of monotonicity on our algorithms appears
in [15].
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Table 5

Time performance on 20,000 bids-256 items with dominated bids

L2 L3 L4 L6 L7 average

greedy(c=0.5) 0.9997 (23.6) 0.9632 (24.5) 0.9350 (24.9) 0.9361 (23.7) 0.7401 (23.7) 0.9148 (24.08)
greedy-3-seq 1.0000 (71.4) 0.9632 (69.2) 0.9966 (74.0) 0.9923 (77.6) 0.7574 (76.4) 0.9419 (73.7)
greedy-3-para 1.0000 (27.7) 0.9632 (27.4) 0.9966 (28.7) 0.9923 (29.5) 0.7574 (30.1) 0.9419 (28.68)

HC(C=0.5)-100ms 1.0001 (100) 0.9750 (100) 0.9544 (100) 0.9493 (100) 0.8529 (100) 0.9463 (100)
HC-3-seq-100ms 1.0001 (100) 0.9688 (100) 0.9967 (100) 0.9925 (100) 0.8407 (100) 0.9598 (100)
HC-3-para-100ms 1.0001 (100) 0.9753 (100) 0.9972 (100) 0.9931 (100) 0.9544 (100) 0.9840 (100)

HC(C=0.5)-1000ms 1.0001 (1000) 0.9856 (1000) 0.9771 (1000) 0.9601 (1000) 1.0111 (1000) 0.9868 (1000)
HC-3-seq-1000ms 1.0001 (1000) 0.9813 (1000) 0.9979 (1000) 0.9945 (1000) 1.0051 (1000) 0.9958 (1000)
HC-3-para-1000ms 1.0001 (1000) 0.9856 (1000) 0.9987 (1000) 0.9962 (1000) 1.0297 (1000) 1.0021 (1000)

Zurel-1st 0.5495 (9511) 0.9713 (211) 0.9959 (862) 0.9888 (776) 0.6018 (1309) 0.8215 (2534)
Zurel 1.0000 (11332) 1.0000 (402) 1.0000 (1878) 1.0000 (1628) 1.0000 (2685) 1.0000 (3585)

casanova-10ms 0.1950 (10) 0.0063 (10) 0.0047 (10) 0.0110 (10) 0.0123 (10) 0.0458 (10)
casanova-100ms 0.3894 (100) 0.0558 (100) 0.0377 (100) 0.0855 (100) 0.0993 (100) 0.1335 (100)

casanova-1000ms 0.9410 (1000) 0.4223 (1000) 0.2601 (1000) 0.3534 (1000) 0.6845 (1000) 0.5323 (1000)
(each value in () is time in milliseconds)

uations are true values, the sum of valuations for the
approximated allocations should be

√
k-competitive

for the number of items k, that is guaranteed by
Lehmann’s mechanism [26]. Competitive analysis can
be applied for revenues instead of social efficiency.
However, in this paper, we do not present a pricing
mechanism so it cannot be applied for revenues in our
approximation. Therefore, the impact of our proposed
approach for these theoretical aspects is limited.

5.3. Difficulty of preparing test sets

It is very important to prepare good datasets to eval-
uate algorithms. In this paper, we mainly used auction
problem datasets that do not contain dominated bids.
Dominated bids are bids that can be easily identified
as bids that must not be winners. A dominated bid has
a bid that has the same or a subset of items but higher
valuation in the same auction problem. When an auc-
tion problem has dominated bids, the problem space
can be easily shrunk down and therefore it is far easier
to solve. For fair and meaningful evaluation of winner
determination algorithms, datasets that have no domi-
nated bids have been used.

However, in some bid distributions, it is very hard
to generate a large number of non-dominated bids. For
example, when we have two bids < {a, b, c}, 30 > and
< {d, e}, 20 >, and a new bid < {a, b}, 35 > is gen-
erated for an additional bid, a bid < {a, b, c}, 30 >
should be deleted from the auction problem since it
is dominated by < {a, b}, 35 >. Therefore, the to-
tal number of bids in the auction problem does not
increase while we generate a new bid. Furthermore,
when we generate a problem with distribution L3 with

constant_items=2 and the total number of items is n,
there should be only n2 or less of non-dominated bids.
For this reason, we only used limited datasets based
on distributions L2, L3, L4, L6, and L7 but not L1, L5
and others. This restricts possible bid distributions for
data preparation, and therefore we can only evaluate
algorithms with limited and artificial datasets.

Figure 5 shows a result for a dataset with 20,000
bids and 256 items that contain dominated bids in their
auction problems. Here, we can see that the advan-
tage of our algorithm is less than the result shown in
Fig. 2. This is because the actual problem space could
be shrunk down to easier problems. However, notice
that our algorithms do not have serious disadvantages
in average performance even in this case. Furthermore,
our algorithm tries to keep dominated bids as losers
to satisfy Weak-WPM. This property is missing or
not proven for other algorithms, excluding Lehmann’s
greedy. We observed that Casanova and SA produced
many winners that violate Weak-WPM.

5.4. Communication overhead

The communication overhead problem is that of the
communication overhead incurred between an auction-
eer and bidders in exchanging bid information (e.g.,
[43]). In [35], Sandholm pointed out that it is rela-
tively easy to solve a winner determination problem
when it has a huge number of bids but a small num-
ber of items.5 It can be interpreted that the problem is

5Note that this “small number” is typically less than 30, since the
algorithm could use O(2n) of memory spaces. Therefore, it cannot
be applicable to our experimental cases.



N. Fukuta and T. Ito / Fine-grained efficient resource allocation using approximated combinatorial auctions 59

rather the communication overhead for gathering too
many bids [25]. In particular, it takes a certain over-
head when we use a kind of agent communication pro-
tocol via Internet to gather bid information for an auc-
tion.

In our experiments, we used a CATS format file
(a simple text file) to store information about bids in
an auction. Typically, the program spent 200 msec of
CPU time to load 20,000 bids, and 1000 msec for
100,000 bids. This is relatively large and hard since our
cutoff time was set around 100 msec to 1000 msec for
each approximation. Furthermore, it takes much more
time when the data are stored on slower storage de-
vices. When we gather such a number of bids via net-
work rather than from a local storage, it will take much
time.

However, considering a differential bid updating ap-
proach for iteratively conducted combinatorial auc-
tions, the overhead will be much smaller than load-
ing all bid information for each time of iteration when
there are small numbers of updates for bids. Therefore,
it is meaningful to achieve such fast approximation al-
gorithms for an auction with a large number of bids.

Furthermore, it is possible to make a concurrent and
pipelined mechanism that has a thread for gathering
bid information for the next auction and another thread
for approximating winners in the current auction. In
this case, there will be negligible overhead for loading
bid data since it will be processed simultaneously. For
the above reason, we excluded communication over-
head (e.g., overhead of loading data from a file) from
the recorded computation time in our experiments.

To solve this communication overhead problem, us-
ing complex Bidding Language is one approach. In
[25], basic definitions and discussions about Bidding
Language are shown. This approach describes bids not
only by simple OR representation but rather by their
underlying semantics and algorithms to generate those
bids.

For example, describe bids as “generate bids that
contain items a, b, and c and assign their base prices
as follows: a = 10, b = 15, and c = 5. And then as-
sign valuation for bids by a quadratic function”. This
complex description will produce 23 − 1 bids at once.
However, there is no common bidding language that is
widely used excluding OR bids. Furthermore, it is easy
to represent the same results of bids that are described
in other bidding languages. In this paper, we focused
on the case where we use OR bid representation. Fur-
ther discussions about Bidding Language exceed the
scope of our paper and are therefore omitted.

6. Related work

6.1. Approaches for optimization problems

There are really many approaches to optimization
problems. Linear programming is one of the well-
known approaches in this area. The winner determina-
tion problem on combinatorial auctions can be trans-
formed into a linear programming problem. Therefore,
it is possible to use a linear programming solver for the
winner determination problem.

CPLEX is a well-known, very fast linear program-
ming solver system. In [43], Zurel et al. evaluated the
performance of their presented algorithm with many
data sets, compared with CPLEX and other existing
implementations. While the version of CPLEX used
in [43] is not up-to-date, the shown performance of
Zurel’s algorithm is approximately 10 to 100 times
faster than CPLEX. In this paper, we showed that our
approach is at least several times faster than Zurel’s ap-
proach with the same optimality on average for large-
scale winner determination problems. Therefore, the
performance of our approach is competitive enough
with CPLEX or similar solver systems. This is natu-
ral since Zurel’s and our approaches are specialized for
combinatorial auctions, and also focus only on faster
approximation but do not seek optimal solutions.

Random-walk search is also a strong approach for
approximating combinatorial optimization problems.
There have been many algorithms proposed based on
random-walk search mechanisms.

In [18], Casanova was proposed, which applies a
random walk SAT approach for approximating the
winner determination problem in combinatorial auc-
tions. In this paper, we showed that our approach out-
performs Casanova when the time constraint is very
hard but the problem space is really large.

Simulated Annealing (SA) is another similar ap-
proach. We prepared an SA-based extension for our
approach and we confirmed it increases the perfor-
mance when the problem size is relatively small. How-
ever, SA needs random-walk in the early stage of its
search and it decreases performance on short-time ap-
proximation.

Genetic Algorithm is another similar approach. In
[2], Avasarala et al. proposed an approach for the win-
ner determination problem on combinatorial auctions.
However, in [2], they noticed that their algorithm is
not effective for approximation in short time but is
effective for obtaining higher optimal solutions with
enough computation time. Random-walk searching is
really effective approximation approach for combina-
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torial optimization problems. However, it is not effec-
tive when there are such hard time constraints. We
focused on solving problems that are hard for such
random-walk search approaches.

6.2. Approaches to obtain optimal solutions

There have been a lot of works on obtaining op-
timal solutions for winner determination in combina-
torial auctions [10]. For example, CABOB [36] and
CASS [12] have been proposed by aiming to get the
optimal allocations.

In [18], it is shown that the Casanova algorithm
outperforms approximation performance of CASS on
winner determination. In this paper, we showed that
our approach outperforms Casanova in settings of a
very large number of bids in an auction. Therefore, our
approach should also outperform CASS in the same
settings.

In [36], Sandholm et al. showed that CABOB out-
performs CPLEX in several settings. However, by indi-
rect comparison of CPLEX and Zurel’s approach, our
algorithm should outperform CABOB in our shown
settings. We argue that our approach is rather comple-
mentary to those algorithms that are seeking exact op-
timal solutions. It is not fair to compare their approx-
imation performances when one guarantees obtaining
optimal solutions but the other does not. Our approx-
imation approach only covers large size problem set-
tings that can only be handled by specialized approx-
imation algorithms. Our approach does not contribute
to advances in developing algorithms to obtain optimal
solutions directly.

6.3. Greedy approaches

Some researchers have noticed the better perfor-
mance of simple greedy and incremental approaches
for very large-scale problems. For example, [35] no-
ticed the ease of approximation on very large auction
problems. In [26], Lehmann et al. mentioned that a
simple greedy approach obtains very high results when
the auction problem is rather huge.

Also in [20], Kastner et al. mentioned a potential ca-
pability of a simple incremental search approach to ap-
ply to very large auction problems and discussed the
sensitivity for the number of bids in an auction. How-
ever, there is little mentioned about a detailed compar-
ison of actual performances for several different types
of datasets. In [20], they only presented their prelimi-
nary experimental results on a dataset that is based on
a single bid distribution.

Guo et al. [16] proposed similar local-search based
algorithms and they argued that their approach is good
for the settings of a large number of bids in a combi-
natorial auction problem. However, in [16], they pre-
sented very limited experimental results and little anal-
ysis or comparison to other high performance algo-
rithms. Also in [16], they did not propose an idea that is
similar to our multiple bid-weighting search. We argue
that this multiple weighting search approach is very ef-
fective and that it distinguishes our approach from oth-
ers. Also, we showed a detailed analysis of our exper-
iments based on datasets generated by possible differ-
ent bid distributions. We also showed direct compar-
isons to Zurel’s approach presented in [43].

6.4. Other approaches

When we have some assumptions about models
for valuation of bids, we can utilize those assump-
tions for better approximation. Dobzinski et al. pro-
posed improved approximation algorithms for auctions
with submodular bidders [11]. Penya et al. proposed
a reverse combinatorial auction mechanism for elec-
tricity markets [31]. The mechanism uses a second-
price sealed-bid multi-item auction with supply func-
tion bidding rather than fixed valuation bidding. They
reported that the complexity of winner determination
could be far less than other reported problems. In our
approach, we do not assume any problem-specific as-
sumptions about models for valuation of bids to keep
generality of proposed algorithms. Lavi et al. reported
an LP-based algorithm that can be extended to support
the classic VCG [23]. Those studies mainly focused
on theoretical aspects. In contrast to those papers, we
rather focus on experimental analysis and implementa-
tion issues. Those papers did not present experimental
analysis of the settings with a large number of bids as
we presented in this paper.

Using sequential auctions [5] is another approach to
overcoming the communication cost problem. Koenig
et al. proposed a multiple-round auction mechanism
that guarantees the upper bound of communication
cost as fixed size k, that is independent from the num-
ber of agents or items in the auction [21]. In our ap-
proach, we only assume that there is a small number
of updated bids from the last round of the auction. Al-
though our algorithm itself can approximate winners
within a very short time with a huge number of up-
dated bids, the communication cost problem remains.
This is a limitation of our approach.
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7. Conclusions

In this paper, we showed that our approximation
algorithms for combinatorial auctions could produce
excellent optimality of approximated winners from a
large number of bids within a very short computation
time that can be applied to fine-grained resource allo-
cation in a ubiquitous computing environment. In par-
ticular, our proposed algorithms outperformed other
algorithms in optimality when a hard time constraint
existed. Furthermore, we compared desirable prop-
erties for those algorithms that will be considered
when they are actually used within application sys-
tems. Through the comparison, we showed that our ap-
proach has certain advantages on acceptability of ap-
proximated allocations, ease of use, and scalability for
larger problems.

In this paper, we focused on the winner determina-
tion problem. Therefore, we eliminated other impor-
tant issues to be solved. The pricing mechanism is an
important part of an auction mechanism. A number of
pricing mechanisms are proposed for different goals
and situations (e.g., [26,30], etc.). Although it is possi-
ble to treat our mechanism as a simple ascending com-
binatorial auction, many issues will be left unsolved.
Furthermore, when we consider two-sided cases (i.e.,
combinatorial exchange [30]), we need to solve the
pricing issue for sellers. In this paper, we left the pric-
ing issue for future work.

APPENDIX

Proof of Proposition 1.

Proposition 1. Our proposed winner determination
algorithms, except for the simulated annealing-based
algorithm, produce allocation Wfin that satisfies
WPM when the algorithm reaches an end.

Proof. Suppose there are arbitrary bundles X, Y ⊆ M
such that X ⊆ Y and two bids bi(X) and bj(Y ) with
prices vi(X) and vj(X) such that vi(X) > vj(Y ). We
will show bj(Y ) �∈ Wfin.

Lemma 1.1. Initial winner set W0 always satisfies
WPM.

Proof of Lemma 1.1. In our algorithm, initial alloca-
tion W0 before updating by hill-climbing always satis-
fies WPM. This is because the initial allocation is gen-
erated by Lehmann’s algorithm. In Lehmann’s algo-

rithm, bi(X) is always ordered before bj(X) with any
c(c ≥ 0). Therefore, there is no chance for bj(X) to
become a winner.

Lemma 1.2. A winner set Wt such that bj(X) ∈ Wt,
will not be a final winner set.

Proof of Lemma 1.2. Summary: After attaining an ini-
tial winner set, our algorithms repeatedly update the
winner set by using our proposed hill-climbing algo-
rithm. Here, we show that final winner Wfin satisfies
WPM by using the proof by contradiction.

Suppose Wf is the final solution such that bj(Y ) ∈
Wf .

When our algorithm tries to insert bi(X) into Wf ,
bi(X) only conflicts with bj(Y ) because X ⊂ Y .

Thus, this insertion procedure will not remove other
bids from Wf . And then bi(X) (and possibly some
other bids bk, bl, . . . for an item set Z = Y −X) will be
inserted instead of bj(Y ), and Wf+1 will be produced
as a candidate of the next winner set.

Hence vi(X) > vj(Y ) and vk, vl, . . . > 0, the total
revenue for Wf+1 must be greater than Wf . Therefore,
Wf has at least one possible updated winner set Wf+1.
This contradicts with the assumption that Wf is Wfin.
So Wfin will not include bj(Y ).

Lemma 1.3. It is guaranteed that our hill-climbing
algorithm stops.

Proof of Lemma 1.3. It is trivial to show that our hill-
climbing algorithm will stop since every winner set up-
date will occur when the total revenue is higher than
before, and it should be equal to or smaller than op-
timal revenue. Also note that the number of bids is
bounded.

Therefore, it is guaranteed that our algorithm pro-
duces Wfin.

Proof of Proposition 2.

Proposition 2. In terms of any allocations that are
achieved during computation (as an anytime algo-
rithm), our proposed winner determination algorithms,
except for the simulated annealing-based algorithm,
satisfy Weak-WPM.

Proof. We show bj(X) ∈ Wfin is always false for two
arbitrary bids bi(X) and bj(X) for the same bundle
X ⊆ M , and vi(X) > vj(X).
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Lemma 2.1. Initial winner set W0 always satisfies
Weak-WPM.

Proof of Lemma 2.1. Recall that all algorithms that
satisfy WPM will satisfy Weak-WPM and since W0

satisfies WPM, W0 clearly satisfies Weak-WPM.

Lemma 2.2. Arbitrary updated winner set Wt at time
t satisfies Weak-WPM if the direct ascendant winner
set Wt−1 satisfied Weak-WPM.

Proof of Lemma 2.2. Summary: We will provide sepa-
rate proofs whether Wt−1 includes bi(X) or not.

Lemma 2.3. Arbitrary updated winner set Wt will not
include bj(X) if the direct ascendant winner set Wt−1

satisfied Weak-WPM and bi(X) ∈ Wt−1.

Proof of Lemma 2.3. Since Wt−1 satisfies Weak-WPM,
bj(X) is not included in Wt−1. When our algorithm
tries to insert bj(X), only bi(X) conflicts with bj(X).
Recall that vi(X) > vj(X), the produced updated
winner set candidate Wt−1′ has smaller revenue than
that of Wt−1. Therefore, Wt−1′ will not be Wt.

Lemma 2.4. Arbitrary updated winner set Wt will not
include bj(X) if the direct ascendant winner set Wt−1

satisfied Weak-WPM and bi(X) �∈ Wt−1.

Proof of Lemma 2.4. Since Wt−1 satisfies Weak-WPM,
bj(X) is not included in Wt−1. Suppose we have a list
U that includes all bids that are not included in Wt−1.
Here, recall that U is an ordered list, and in U , bj(X) is
ordered after bi(X). So bi(X) has a chance to update
Wt−1 before bj(X) has.

Suppose bi(X) successfully updates Wt−1. No
chance to update will be given for bj(X) and the
updated result will become Wt immediately. Here,
since bj(X) conflicts with bi(X), Wt will not include
bj(X).

Suppose bi(X) failed to update Wt−1. Let bk, bl, . . .
be bids that are inserted with the bid bi(X) in the trial,
and the sum of revenue for bk, bl, . . . be v. Recall that
because vi(X) + v > vj(X) + v, the trial with bj(X)
will also fail to update Wt−1. Therefore, Wt will not
include bj(X).

As shown above, Wt satisfies Weak-WPM whether
Wt−1 includes bi(X) or not.

Recall that W0 satisfies Weak-WPM, so all updated
winner sets of W0 satisfy Weak-WPM. Thus, for any
winner set Wt, including W0 and Wfin, Weak-WPM
is satisfied.
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