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Abstract

Multi-Issue Negotiation protocols have been studied very widely and
represent a promising field since most of negotiation problems in the real-
world are complex ones including multiple issues. In particular, in reality
issues are constrained each other. This makes agents’ utilities nonlinear.
There have been a lot of work on multi-issue negotiations. However, there
have been very few work that focus on nonlinear utility spaces. In this pa-
per, we assume agents have nonlinear utility spaces. For the linear utility
domain, agents can aggregate the utilities of the issue-values by simple
linear summation. In the real world, such aggregations are unrealistic.
For example, we cannot just add up the value of car’s tires and the value
of car’s engine when engineers design a car. In this paper, we propose an
auction-based multiple-issue negotiation protocol among nonlinear util-
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ity agents. Our negotiation protocol employs several techniques, i.e.,
adjusting sampling, auction-based maximization of social welfare. Our
experimental results show that our method can outperform the existing
simple methods in particular in the huge utility space that can be often
found in the real-world. Further, theoretically, our negotiation protocol
can guarantee the completeness if some conditions are satisfied.

Keywords: Multi-issue Negotiation, Non-linear Utility, Multi-agent Sys-
tems

1 Introduction

Multi-Issue Negotiation protocols have been studied very widely and represent a
promising field since most of negotiation problems in the real-world are complex
ones including multiple issues. In particular, in reality, issues are constrained
each other. This makes agents’ utilities nonlinear. Further, even in collabora-
tive situation, to get an agreement, agents need to act competitively because of
their self-interested nature.

For example, when two designers collaboratively design a new car, there are
multiple issues, e.g., color, engine, style, etc. They have preference over each
issue, and there are constraints between the issues as well. For example, if the
size of tires is large and the body style is R.V., then the size of the engine
needs to be larger than 2,500 cc. This kind of interdependency between issues is
ubiquitous in the real-world. The interdependency among issues makes agents’
utilities very complex. This complex utility eventually can not be modeled
as a simple linear utility function. We have to model such complex utility as
completely non-linear utility function. In addition, a constraint between the
style and the size of the engine can be different between designer’s companies.
Because these companies often hope to use their own parts for a new car, the
designers are now in a competitive situation. Agents thus need to compete to
get a desirable agreement over constraints as well as over issue values.

We propose an auction-based multiple-issue negotiation protocol among non-
linear utility agents. In order to make the protocol scalable, we first employ a
sampling method for agents. By sampling its own utility space, an agent can
reduce its search cost. Also, the simple sampling often fails to find better so-
lutions. Thus, in our protocol, agents adjust their sampled points firstly by
using a search technique. After that, agents submit bids. Since we assume a
huge utility space, if these bids are based on contract points, there could be too
much bids. Thus, in our model, agents make bids on a set of constraints among
issue values. This bid expression can drastically reduce the computational cost.
The mediator finds a combination of bids that maximizes social welfare. Our
experimental results show that our method can outperform the existing simple
methods in particular in the huge utility space that can be often found in the
real-world. Further, theoretically, our negotiation protocol can guarantee to find
the optimal point if the sampling is conducted extensively and the threhsold for
selecting bids is 0.
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There are a lot of previous works on multi-issue negotiation [1, 2, 3, 4, 5, 6].
These efforts differ from our work since our protocol is attacking against handle
completely nonlinear utilities. Most existing work also assumes that agents
are totally collaborative or have linear utility functions. Our work focuses on
mainly competitive agents and nonlinear utility functions. The details are shown
in Section 6.

The rest of the paper is organized as follows. First we describe a model of
nonlinear utility multi-issue negotiations. Here we define the nonlinear utility
function. Second we propose a bargaining protocol that achieves a desirable
solution in nonlinear utility multiple issue negotiations. Here, we propose an
auction based bargaining protocol and a heuristic method for speeding up the
protocol. Third we demonstrate the experimental results. Then, we discuss
incentive compatibility in our method. Finally, we compared our work with the
existing work to clarify the features of our method, and concluding remarks are
given in the final section.

2 A Negotiation Model based on Nonlinear Util-
ity

2.1 The Model

We consider the following situation with n agents who want to reach an agree-
ment. An agent is represented by ai ∈ N . There are m issues, sj ∈ S, for
negotiation. The number of issues represents the number of dimensions of the
utility space. For example, if there are 3 issues, the utility space becomes 3
dimensional spaces. An issue sj has a value, [0, X], i.e., sj ∈ [0, X]. There are l
constraints, ck ∈ C. A constraints represents a hyper dimensional solid among
multiple issues. Figure 1 shows an example of a constraint between issue 1 and
issue 2. This constraint has value of 55, and hold if the issue values for issue1
are [3, 7] and the issue values for issue 2 are [4, 6]. Suppose a person has this
constraint. Then, this means that there is interdependency between issue 1 and
issue 2. Especially, this person has utility 55 if and only if issue 1’s values are
in 3 to 7 and issue 2’s values are in 4 to 6. If issue 1’s value is 2 (out of 3 to 7),
then this person does not have any utility from this constraint.

The term ”constraint” has a different meaning in this paper compared with
the normal usage of ”constraint”. Here, the term ”constraint” has two meanings,
interdependency (relationship), and conditions which cannot be violated. For
example, in Figure 1, the conditions are ”issue 1’s values are 3 to 7” and ”issue
2’s values are 4 to 6.” Only under this condition, this constraint is satisfied.

A contract is represented by a vector ~s = (s1, ..., sm). Agent ai has value
vai(ck, ~s) on a constraint ck with a contract ~s. vai(ck, ~s) has a positive value if
constraint ck is satisfied on contract ~s. In the real-world, vai(ck, ~s) varies very
much among different contacts and different constraints. This makes agent’s
utility space intractably nonlinear.
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2.2 Nonlinear utility

Figure 2 shows an example of a nonlinear utility space. There are 2 issues, i.e.,
2 dimensions and X = 100 for each issue. Also, there are 50 constraints that
related to 1 issue and 100 constraints that related to 2 issues. The utility space
is completely bumpy and there are many hills and valleys.

If we use a linear expression, agent’s utility is defined as follows: uai
(~s) =∑

ck∈C vai(ck, ~s). This expression looks linear. However, agent’s utility space
is nonlinear in the sense that the utility does not have a linear ex-
pression against contract ~s. The interdependency among issues, which is
represented as a constraint ck, makes the utility space non-linear in terms of
contracts. This is because the utility of higher dimensional constraints that
depend on multiple issues can not be expressed by a linear function on a sin-
gle issue. This point differs very much from the other existing works in which
any dependency among issues are not assumed. Therefore, in our model, an
utility space has a totally bumpy shape, which can not be represented a usual
functional representation.

Another important point is that vai(ck, ~s) can not be known from the other
agents. Even agent ai does not know the value when he calculates the value.
This means that in the model agents are situated under an uncertain environ-
ment. Our protocol can be employed for such an uncertain environment.

On the contrary, there could be a simple nonlinear utility function that, for
example, can be defined as like ui = f(s1) ∗ g2(s2). This function is non-linear.
However, this kind of nonlinear function constructs a simple shape utility space
in which the optimal contract is a single or optimal contracts can be easily
calculated from utility functions and the contracts.

Finding an optimal contract for a single agent in the utility space such as
Figure 2 is actually a multi objective optimization problem. Simulated annealing
and evolutionary algorithms have been developed in the AI field and OR field
for such optimization problem. However, we consider negotiation among two or
more agents. Agents do not want to reveal their preference very much. Thus, we
can not just employ such methods, i.e., simulated annealing and evolutionary
algorithms, because such methods assume to reveal such preferences.

2.3 Finding Pareto Efficient Contracts

The objective function for our protocol can be described as follows:

arg max
~s

∑
ai∈N

uai(~s) (1)

Namely, our protocol tries to find a contract point that maximizes social welfare,
i.e., the total utilities of agents. Such a contract point eventually satisfies Pareto
Efficiency.

If we use an exhaustive search, when there are M issues and X values for each
issue, the utility space becomes XM . This space is actually intractable when
the size M and the size X become large. Thus, in our protocol, we propose to
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employ a sampling method for sampling such a huge utility space. There can
be a case in which sampling fails to get accurate contract points. Thus we also
propose to employ adjusting method for sampling. Namely, in our protocol,
after sampling some points, an agent conduct simple searches from each point.
This method perform very well for huge utility spaces.

3 Auction-based Negotiation among Agents

Our auction-based negotiation protocol is defined by the following four steps.

(Step 1 : Sampling) Each agent samples its utility space in order to find
high-utility contract regions. Figure 3 shows this concept. A fixed number
of samples are taken from a range of random points, drawing from a uniform
distribution. Note that, if the number of samples is too low, the agent may miss
some high utility regions in its contract space, and thereby potentially end up
with a sub-optimal contract.

For determining a sampling point, we take one value from a uniform dis-
tribution from 0 to N for each issue (dimension). N is the maximum issue
value. For example, suppose there are two issues, s1 and s2. Also suppose the
values for each issue are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Then when getting one sam-
pling contract point, we take one s1’s value from distribution Uniform(0, 9)
and one s2’s value from distribution Uniform(0, 9). Uniform(0, N) means an
uniform distribution from 0 to N . It is very difficult to pick samples that are
within the optimal region. Therefore, we adopt a simulated annealing adjust-
ment method after sampling in Step 2 of our negotiation protocol. This can
drastically improve the optimality.

(Step 2 : Adjusting) Each agent adjusts samples by using a simulated an-
nealing method. This step helps to adjust the sampling point. Only sampling
often fails to get more feasible contracts without this step. From each sampled
contract point, an agent conducts a simulated annealing method. In fact, this
conducts multiple simulated annealing in the utility space. Figure 4 shows this
concept in ideal situation. By simulated annealing each sampling point may
move to its close optimal contract point.

(Step 3 : Bidding) Each agent make bids. For each sampled contract points,
an agent valuates its utility. If the utility is larger than the threshold δ, then
he packs a set of constraints into a single bid. The bid value is the value of the
contract point which is a sum of values of constraints included in the bid. The
threshold δ is defined by the protocol designer or the mediator. Figure 5 shows
this concept.

SN : The number of samples
T : Temperature for Simulated Annealing
V : A set of values for each issue, Vm is for an issue
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m
1: procedure bid-generation with SA(Th, V, SN, T)
2: Psmpl := ∅
3: while |Psmpl| < SN

4: Psmpl := Psmpl ∪ {pi} (randomly selected from P )
5: P := Π|I|

m=0Vm, Psa := ∅
6: for each p ∈ Psmpl do
7: p′ := simulatedAnnealing(p, T ),

Psa := Psa ∪ {p′}
8: for each p ∈ Psa do
9: u := 0, B := ∅, BC := ∅

10: for each c ∈ C do
11: if c contains p as a contract and p satisfies

c then
12: BC := BC ∪ c,

u := u + vc

13: if u >= Th then
14: B := B ∪ (u,BC)

(Step 4 : Maximizing Social Welfare) The mediator finds combinations
of bids that shares at least some of contract points (consistency) and maximize
the total value of the bids (maximization). A contract point represents a set of
values of all issues, while a bid is a set of contract points. Each agent makes a
bid and is willing to accept any contract point in the bid, as its utility is higher
than the threshold. Thus, in this algorithm, the maxSolution is a contract,
not a bid. More precisely, the maxSolution is (a) combination(s) of bids that
shares at least some of contract points and maximize the total value of the bids.
When the mediator cannot find any bids that share contract points, especially
when the sampling size is small or the threshold is high, the negotiation fails to
achieve an agreement.

In this step, the mediator can employ a breadth-first search with branch
cutting based on the above consistency. The size of the search space of the
mediator depends on the number of constraints. The number of constraints can
be much less than the number of the contract points. Thus, this constraint-
based finding mechanism for the mediator can reduce the computational cost
very much compared with an exhaustive search. Figure 6 shows this concept.

Ag: A set of agents
B: A set of Bid-set of each agent (B = {B0, B1, ..., Bn}, a set of bids from agent
i is Bi = {bi,0, bi,1, ..., bi,m})

1: procedure search solution(B)
2: SC :=

∪
j∈B0

{b0,j}, i := 1
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3: while i < |Ag| do
4: SC ′ := ∅
5: for each s ∈ SC do
6: for each bi,j ∈ Bi do
7: s′ := s ∪ bi,j

8: if s′ is consistent then SC ′ := SC ′ ∪ s′

9: SC := SC ′, i := i + 1
10: maxSolution = getMaxSolution(SC)
11: return maxSolution

It is clear that we have the following proposition on the completeness.

Proposition 1 (Completeness). If the threshold δ is 0 and the sampling is
conducted in all points, the proposed method can achieve the optimal point.

Proof. If the threshold δ is 0, then the agent submits all possible bids on the
sampled contract points. If the sampling is conducted in all points, then the
agent searches all possible contracts. Therefore, under such context, the agent
submits all possible bids on the all possible contracts. Thus, the mediator
searches all possible combinations of the submitted bids that maximizes social
welfare, i.e., the sum of utilities among agents. This process is exactly same as
an exhaustive search in which the mediator searches the contract points that
maximizes the sum of utilities among agents.

In fact, the completeness and the computational cost are a trade-off relation.
Thus, we have to carefully adjust the threshold and the number of sampling
points based on the figure of utility spaces.

4 Experiments

4.1 Setting

We conducted several experiments to evaluate the effectiveness and computation
time of our approach. In each experiment, we ran 100 negotiations between
agents with randomly generated utility functions. For each run, we applied an
optimizer to the sum of all the agents’ utility functions to find the contract with
the highest possible social welfare. This value was used to assess the efficiency
(i.e. how closely optimal social welfare was approached) of the negotiation
protocols. When possible, we used exhaustive search (EX) to find the optimum
contract, but when this became intractable (as the number of issues grew too
large) we switched to simulated annealing (SA)[7]. The SA initial temperature
was 50.0 and decreased linearly to 0 over the course of 2500 iterations. The
initial contract for each SA run was randomly selected.

We compared two negotiation protocols: hill-climbing (HC), and our auction-
based protocol with random sampling (AR). The HC approach implements a
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mediated single-text negotiation protocol[8] based on hill-climbing. We start
with a randomly generated baseline contract. The mediator then generates
a variant of that baseline and submits it for consideration to the negotiating
agents. If all the agents prefer the variant over its predecessor, the variant be-
comes the new baseline. This process continues until the mediator can no longer
find any changes that all the agents can accept:

In our implementation, every possible single-issue change was proposed once,
so the HC protocol requires only domainsize × numberofissues iterations for
each negotiation (e.g., 100 steps for the 10 issue case with domain [0, 9]). We
selected this protocol as a comparison case because it represents a typical exam-
ple of the negotiation protocols that have been applied successfully, in previous
research efforts, to linear utility spaces.

The parameters for our experiments were as follows:

• Number of agents is n = 2 to 5. Number of issues is 1 to 10. Domain for
issue values is [0, 9].

• Constraints for linear utility spaces : 10 unary constraints.

• Constraints for nonlinear utility spaces: 5 unary constraints, 5 binary
constraints, 5 trinary contraints, etc. (A unary contraint relates to one
issue, an binary constraint relates to two issues, and so on).

• The maximum value for a constraint : 100 × NumberofIssues. Con-
straints that satisfy many issues thus have, on average, larger weights.
This seems reasonable for many domains. In meeting scheduling, for ex-
ample, higher order constraints concern more people than lower order
constraints, so they are more important for that reason.

• The maximum width for a constraint : 7. The following constraints,
therefore, would all be valid: issue 1 = [2, 6], issue 3 = [2, 9] and issue 7
= [1, 3].

• The number of samples taken during random sampling : NumberofIssues×
200.

• Annealing schedule for sample adjustment: initial temperature 30, 30 it-
erations. Note that it is important that the annealer not run too long or
too ’hot’, because then each sample will tend to find the global optimum
instead of the peak of the optimum nearest the sample point.

• The reservation value threshold agents used to select which bids to make:
100.

• The limitation on the number of bids per agent: n
√

6400000 for N agents. It
was only practical to run the winner determination algorithm if it explored
no more than about 6,400,000 bid combinations, which implies a limit of
n
√

6400000 bids per agent, for N agents.
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4.2 Results

Figure 7 shows an optimality rate for each method. In this context, HC produces
highly suboptimal results, averaging only 40% of optimal, for example, for the
10 issue case. Why does this happen? Since every agent has a ”bumpy” (multi-
optimum) utility function, the HC mediator’s search for better contracts grinds
to a halt as soon as any of the agents reach a local optimum, even if a contract
which is better for all agents exists somewhere else in the contract space. The
AR protocol, by contrast, achieves much better (often near-optimal) outcomes
for higher-order problems. Since agents using the AR protocol generate bids that
cover multiple optima in their utility spaces, our chances of finding contracts
that are favored by all agents is greatly increased.

The increased social welfare of our auction-based protocol does, however,
come at a cost. Figure 8 shows the computation time needed by the HC and
AR negotiation protocols with 4 agents. HC has by far the lowest computational
cost, as is to be expected considering that agents do not need to generate bids
themselves and need consider only a relative handful of proposals from the me-
diator. HC’s computational needs grow linearly with problem size. In the AR
protocol, by contrast, while the bid generation computation grows linearly with
problem size, the winner determination computation grows exponentially (as
numberofbidsperagentnumberofagents). At some point, the winner determina-
tion cost becomes simply too great. This explains why social welfare optimality
begins to drop off, in figure 7, when the number of issues exceeds 6. In our en-
vironment, the winner determination algorithm can find results in a reasonable
period of time if the total number of bid combinations is less than 6,400,000.
With 4 agents, this implies a limit of 4

√
6400000 = 50 bids per agent. The num-

ber of bids generated per agent, however, begins to grow beyond that limit as
we go to higher numbers of issues. This means that the mediator is forced to
start ignoring some of the submitted bids (lower-valued bids are ignored), with
the result that social-welfare maximizing contracts are more likely to be missed.

In figure 9 we summarize the impact of these scaling considerations. This
figure shows the social welfare optimality of the AR protocol, for different num-
bers of issues and agents, given that the mediator limits the number of bids
per agent to ( n

√
6400000). As we can see, AR produces outcomes with 90%+

optimality for a wide range of conditions, but fares relatively poorly, due to com-
putational limitations, when the number of agents exceeds 2 and the number of
issues exceeds 7.

The failure rates shown in figure 10 present a reason of the poor optimality.
The meaning of failure is that agents cannot achieve an agreement. As shown
in the figure, the failure rates for cases with over 2 agents and 7 issues is getting
high. As the number of agents is increased, the limit of the number of bids for
each agent becomes low. Thus, it becomes hard to identify overlaps between
bids. Clearly, high failure rates cause the poor optimality. It is thus best suited,
at present, for medium-sized negotiation problems, especially those involving
just two agents.

We additionally analyzed the effect of the variation of the threshold on the
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failure rates. Figure 11 shows the result by varing the threshold from 200 to 1000
for 2 10 issues cases. As we can see, as the threshold becomes high, the failure
rates becomes high. Particularly, for 2, 3, 4 issues case, there are remarkable
effect. The reason is as follows. When the threshold is too high for a problem
setting, an agent can submit only high-utility bids. Thus, the number of bids
becomes small and each bid can cover small high-utility region. Accordingly, it
is difficult to find overlapping regions. When the number of issues is small (e.g.,
2,3,4), the number of bids is also small, so then it is difficult to get a solution.
Even if the number of issues is large, the failure rate is getting worse as the
thereshold becomes high. This is because the region of each bid becomes small.
This analysis suggests that it is an important issue how to set an appropriate
threshold.

5 Incentive Compatibility

Out negotiation mechanism can be made incentive compatible (i.e., where
agents are incented to provide the truthful bid values that are necessary to
ensure [near-]optimal social welfares) by defining payments for agents. For this
purpose we employ Groves mechanism[9]. We assume unlimited agent budgets,
which is a standard assumption for these kinds of incentive analyses [10].

We call the new mechanism M. We define agent i’s type θi to be a set of
constraints Ci and its value wi : θi = (Ci, wi), where wi =

∑
c∈Ci

w(c). θi can
be viewed as a bid from agent i.

In this mechanism, agent i submits type θ̂ (a bid), which may not be true
(i.e., may not represent the true weight for those constraints). Based on the
reported types θ = (θ1, ..., θN ), our mechanism computes :

s∗(θ̂) = argmax
s∈S,sisconsistent

∑
i

zi(s, θ̂i),

where S is a set of contracts, zi(s, θ̂i) is i’s valuation function on the consistent
contract s when i reports θ̂i. s does not violate any constraints in θ̂. zi(s, θ̂i)
is a nonlinear function in our case. For the purpose of this analysis, we will
assume an ideal case in which each agent has complete knowledge on his/her
own utility space.

We define agent i’s payments as follows - a direct adoptation of Groves
mechanism:

ti(θ̂) = hi( ˆθ−i) −
∑
j 6=i

zj(s∗(θ̂), θ̂j) (2)

The first term, hi( ˆθ−i), in the right hand in the equation (2) is an arbitrary
function on the reported types of every agent except i.

Agent i’s utility for making a bid (i.e., reporting a type) θ̂i can be defined
as follows:

uM
i (θ̂i) = zi(s∗(θ̂), θi) − ti(θ̂) (3)
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Proposition 2 (Incentive compatibility). M is incentive compatible (i.e., truth
telling is a dominant strategy).

Proof. The proof is almost the same as that for Groves mechanism. Based
on the utility function (3), uM

i (θ̂i) = zi(s∗(θ̂), θi) − ti(θ̂) = zi(s∗(θ̂i), θi) +∑
j 6=i(s

∗(θ̂), θ̂j) − hi( ˆθ−i). Agent i can not control hi( ˆθ−i). Therefore he wants
to maximize zi(s∗(θ̂i), θi) +

∑
j 6=i(s

∗(θ̂), θ̂j)(i). On the other hand, mecha-
nism M computes the following because to maximize social welfare efficiency:
argmax

s∈S

∑
i zi(s, θ̂i). This can be written as follows: argmax

s∈S
[zi(s, θ̂i)+

∑
j 6=i zj(s, θ̂j)].

For agent i, to maximize the equation (i), he must report θ̂i = θi, i.e., his truth-
ful type.

6 Related Work

There are a lot of previous work on multi-issue negotiation [1, 2, 3, 4, 5, 6].
These efforts differ from our work since our protocol is attacking against handle
completely nonlinear utilities. We can find several previous efforts focus on
nonlinear utilities.

Klein et al. [11] proposed an agent negotiation method for nonlinear utility
models. A mediator agent effectively manages negotiation between two agents so
that they reach a Pareto optimal agreement point. Our work originally inspired
by this work. The difference is that we employ auction style method so that
two or more agents can participate in our negotiation model.

Ito et. al [12] proposed a simple negotiation method for multi-issue nego-
tiation and extend it for nonlinear utility domain. The protocol is based on a
combinatorial auction protocol. However, it did not show sufficient result on
nonlinear utility domain.

Lin et al. [13] proposed bilateral multi-issue negotiations for nonlinear util-
ity models. They explored a range of protocols based on mutation and selection
with binary contracts. (1) Multiple text proposal exchange: Each agent main-
tains a population of contracts, and proposes several of them at once, optionally
annotated with that agent’s preference information. At each step, one updates
one’s own population by selecting from the result of recombining the other
agents’ counter proposals with one’s current population. Each agent keeps try-
ing to increase contract utility, so it is a multiple negotiation text protocol rather
a concession protocol. (2) Mediated multiple text negotiation: a mediator starts
by generating a random set of possible contracts. Each agent identifies the sub-
set it prefers. These subsets are recombined and mutated, forming a new set of
candidates that the agents selects from. At some point, the agents rank order
their preferred subsets, and the highest match represents the final agreement.
The paper does not describe what kind of utility functions are used, nor does
it present any experimental analyses. It is therefore unclear whether this strat-
egy enables sufficient exploration of the strategy space to find win-win solutions
with multi-optimal utility functions. But the idea does seem interesting.
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The followings efforts focus on linear utility models.
Fatima et al. [14] proposed an agenda-based framework for multi-issue ne-

gotiation. They discussed mainly how to decide the order that issues should
be negotiated in, which impacts efficiency and fairness. Issues are independent.
The difference is that we employ auction methods and discuss the extension to
nonlinear utility cases.

Jonker et al. [15, 16, 17] propose an agent architecture for multi-issue nego-
tiation. However, they use a linear utility (weighted sum) model.

Luo et al. [18] proposed that proposal exchange approach wherein tradeoffs
as well as concessions are used to seek a Pareto-optimal solution. Contracts are
represented using (gradually tightening) fuzzy constraints so they represent a
subspace rather than a single point. They model negotiation as a distributed
constraint optimization problem with self-interested agents. Agents exchange
proposals, relaxing their constraints over time, until there is an agreement. Pref-
erences are modeled as prioritized fuzzy constraints (over one or more issues) are
so they can be partially satisfied. Since they do allow one to express preferences
over multiple attributes (e.g. cheap and distant is preferred over expensive and
close) this does produce a multi-optimum utility function. They claim their al-
gorithm is provably optimal, but do not discuss computational complexity and
provide only a single small-scale example. The main difference is that we model
multiple issues negotiation as generalized CSP, and assume competitive agents.

In Barbuceanu and Lo [19], a contract is defined as a goal tree, with a set
of on/off labels for each goal (this defines the contract). A goal may represent,
for example, the desire that an attribute value be within a given range. There
are constraints that describe what patterns of on/off labels are allowable, as
well as utility functions that describe, for each agent, what the utility of a given
goal tree labeling is. This is essentially a binary-valued contract, except that
the goal tree structure imposes some additional internal consistency constraints
on what goals can be on or off (e.g., if a goal is on, so are all of its’ subgoals;
also, for disjunctive branches, only one of the subgoals can be on at a time).
The total utility of a contract (they call it a set of on/off goal labels) is the
sum of the utilities for each goal. They use a constraint solver algorithm to find
the contracts that maximize the goal utilities plus satisfy as many constraints
as possible, producing a multiple optimal utility function. It appears that all
constraints are viewed as equally important. They claimed that their method
is scalable. But very small example is shown and no theoretical analysis was
shown. The main difference is that we employ auction method for resolving
conflicts among competitive agents.

In Ito and Shintani [20, 21], a persuasion protocol was proposed. In the
paper, people’s preferences over multiple issues are quantified as a weighted hi-
erarchy, using the Analytic Hierarchy Process (AHP). The weighted hierarchy
involves problem issues and solution candidates. Each issue and solution can-
didate has a weighted values. In addition, by utilizing human’s fuzzy weights,
a software agent can change its preference when another agent persuades it to.
Agents are not totally competitive in this study.

Distributed constraint satisfaction problem (DisCSP)[22] is a constraint sat-
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isfaction problem with distributed agents. DisCSP has not been assuming that
agents are cooperative or competitive. However, in the DisCSP literature, the
main results assume agents are cooperative[23, 24]. The difference is that we
assume a generalized CSP among competitive agents, and give a negotiation
protocol for that situation.

7 Conclusions and Future work

Multi-issue negotiation protocols have been studied very widely. However, there
have been very few work that focus on nonlinear utility spaces. In this paper,
we assumed agents have nonlinear utility spaces. We proposed an auction-based
multiple-issue negotiation protocol among nonlinear utility agents. Our negotia-
tion protocol employs several techniques, i.e., adjusting sampling,auction-based
maximization of social welfare. Our experimental results show that our method
can outperform the existing simple methods in particular in the huge utility
space that can be often found in the real world. Further, theoretically, our
negotiation protocol can guarantee the completeness if some conditions are sat-
isfied.

Interestingly, the exhaustive search often fails and cannot terminate if the
utility space becomes huge,. Also, when the utility space becomes huge and the
number of constraints is not large, then the simulated annealing search often
drop into local optimal. Even such cases our proposed method, the negotiation
method with SA-sampling, can find approximately optimal points (we can not
validate the points are optimal because the exhaustive search does not work in
such a huge utility space).

In terms of future work, we push to scale up our method. If we increase
the threshold for identifying bids, this reduces the number of bids and thus
the winner determination computational cost decreases. We may also be able
to take fewer samples, with hotter annealing at each sample point, since we
expect fewer peaks if the threshold is high. However, increasing the threshold
increases the risk of non-optimal outcomes since peaks that would belong to a
Pareto-optimal negotiation outcome may be missed. So there is a computational
cost/optimality tradeoff to be explored, which is affected by the number of
sampling points, annealing temperature, and bid threshold. The next step is to
clarify this tradeoff by tuning and sophisticating the negotiation method.

References

[1] Fatima, S., Wooldridge, M., Jennings, N.R.: Optimal negotiation of mul-
tiple issues in incomplete information settings. In: Proc. of Autonomous
Agents and Multi-Agent Systems (AAMAS2004). (2004)

[2] R.Y.K., L.: Towards genetically optimised multi-agent multi-issue negotia-
tions. In: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS05). (2005)

13



[3] Rocha, A.P., Oliveira, E.: Adaptive multi-issue negotiation protocol for
electronic commerce. In: Proceedings of The Fifth International Confer-
ence on The Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM 2000). (2000)

[4] Soh, L.K., Li, X.: Adaptive, confidence-based multiagent negotiation strat-
egy. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS2004). (2004)

[5] Wang, L.M., Huang, H.K., Chai, Y.M.: A learning-based multistage nego-
tiation model. In: Proc. of International Conference on Machine Learning
and Cybernetics. (2004) 140–145

[6] Zhang, N., Zhang, S., Wang, L., Yang, J., Xu, Z.: Offer group genera-
tion and delayed processing in multi-issue negotiation. In: Proceedings of
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2004).
(2004) 702–705

[7] Russell, S.J., Norvig, P.: Artificial Intelligence : A Modern Approach.
Prentice Hall (2002)

[8] Raiffa, H.: The Art and Science of Negotiation. Belknap Press (1982)

[9] Groves, T.: Incentives in teams. Econometrica 41(4) (1973) 617–31

[10] Ausubel, L.M., Milgrom, P.: Ascending auctions with package bidding.
Frontiers of Theoretical Economics 1(1) (2002)

[11] Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex
contracts. Group Decision and Negotiation 12(2) (2003) 58–73

[12] Ito, T., Klien, M.: A multi-issue negotiation protocol among competitive
agents and its extension to a nonlinear utility negotiation protocol. In:
Proc. of the 5th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS06). (2006) (to appear)

[13] Lin, R.J., Chou, S.T.: Bilateral multi-issue negotiations in a dynamic
environment. In: In the Proceedings of the AAMAS Workshop on Agent
Mediated Electronic Commerce (AMEC V). (2003)

[14] Fatima, S.S., Wooldridge, M., Jennings, N.R.: An agenda-based framework
for multi-issue negotiation. Artificial Intelligence 152 (2004) 1–45

[15] Tibor Bosse, C.M.J.: Human vs. computer behaviour in multi-issue nego-
tiation. In: In the Proceedings of 1st International Workshop on Ratio-
nal, Robust, and Secure Negotiations in Multi-Agent Systems (RRS2005).
(2005)

[16] Jonker, C.M., jan Treur: An agent architecture for multi-attribute nego-
tiation. In: In the Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI2001). (2001) 1195–1202

14



[17] Jonker, C.M., Robu, V.: Automated multi-attribute negotiation with ef-
ficient use of incomplete prefenrece information. In: In the Proceedings
of the International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS2004). (2004)

[18] Luo, X., Jennings, N.R., Shadbolt, N., fung Leung, H., man Lee, J.H.:
A fuzzy constraint based model for bilateral, multi-issue negotiations in
semi-competitive environments. Artificial Intelligence 148 (2003) 53–102

[19] Barbuceanu, M., Lo, W.K.: Multi-attribute utility theoretic negotiation
for electronic commerce. In: Proceedings of the International Workshop on
Agent-mediated Electronic Commerce (AMEC2000). (2000)

[20] Ito, T., Shintani, T.: Persuasion among agents: An approach to implement-
ing a group decision support system based on multi-agent negotiation. In:
Proc. of the 15th International Joint Conference on Artificial Intelligence
(IJCAI97). (1997) 592–597

[21] Shintani, T., Ito, T.: An architecture for multi-agent negotiation using
private preferences in a meeting scheduler. In: In the Proceedings of the
5th Pacific Rim International Conferences on Artificial Intelligence (PRI-
CAI’98)(Lecture Notes in Artificial Intelligence 1531, PRICAI’98: Topics in
Artificial Intelligence, Hing-Yan Lee and Hiroshi Motoda (Eds.),Springer).
(1998) 47–58

[22] Yokoo, M.: Distributed Constraint Satisfaction. Springer (2001)

[23] Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: Asynchronous
distributed constraint optimization with quality guarantees. Artificial In-
telligence 161 (2005) 149–180

[24] Yokoo, M., Sakurai, Y., Matsubara, S.: Robust combinatorial auction
protocol against false-name bids. Artificial Intelligence 130(2) (2001) 167–
181

Authors Biography

Takayuki Ito
He received the B.E., M.E, and Doctor of Engineering from the Nagoya Insti-
tute of Technology in 1995, 1997, and 2000, respectively. From 1999 to 2001,
he was a research fellow of the Japan Society for the Promotion of Science
(JSPS). From 2000 to 2001, he was a visiting researcher at USC/ISI (Univer-
sity of Southern California/Information Sciences Institute). From April 2001
to March 2003, he was an associate professor of Japan Advanced Institute of
Science and Technology (JAIST). He joined Nagoya Institute of Technology as
an associate professor of Graduate School of Engineering in April 2003. From
2005 to 2006, he was a visiting researcher at Division of Engineering and Ap-
plied Science, Harvard University and a visiting researcher at Sloan School of

15



Management, Massachusetts Institute of Technology. He received the Young
Scientists’ Prize, The Commendation for Science and Technology by the Min-
istery of Education, Culture, Sports, Science, and Technology, 2007, the Nagao
Special Research Award of the Information Processing Society of Japan, 2007,
the Best Paper Award of AAMAS2006, the 2005 Best Paper Award from Japan
Society for Software Science and Technology, the Best Paper Award in the 66th
annual conference of 66th Information Processing Society of Japan, and the Su-
per Creator Award of 2004 IPA Exploratory Software Creation Projects. His
main research interests include multi-agent systems, intelligent agents, group
decision support systems, and agent-mediated electronic commerce.

Mark Klein
He received Ph. D in Computer Science from University of Illinois in 1989.
From 1989 to 1991, he was a visiting researcher at the Hitachi Advanced Re-
search Laboratories. From 1991 to 1995, he worked in the computer science
organizatino in Boeing Computer Services as an Artificial Intelligence Special-
ist. From 1995 to 1997, he was a research faculty at the Applied Research Lab
Information Systems Department at Pennsylvania State University. He joined
Sloan School of Management at Massachusetts Institute of Technology as a re-
saerch associate in 1997. From 2000, he has been a principal research scientist.
His research interests include multi-agent negotiation, collaborative design, and
exceptino handling.

Hiromitsu Hattori
Hiromitsu HATTORI is currently an assistant professor at Kyoto University,
JAPAN. He received the B.E., M.E., and Doctor of Engineering from Nagoya
Institute of Technology in 1999, 2001, 2004, respectively. From 2004 to 2007,
he was a research fellow of the Japan Society for the Promotion of Science
(JSPS). During that period, he worked with Dr. Peter McBurney at University
of Liverpool as an honorary research assistant, and with Dr. Mark Klein at
Massachusetts Institute of Technology as a visiting researcher. He has worked on
multiagent systems, with particular focus on negotiation, agent-based electronic
commerce support. His current interests include multi-issue negotiation for
complex problems, and massively multiagent simulation.

16



Utility

Issue 2

Issue 1

3

7

4 6

55

Figure 1: Example of A Constraint

Figure 2: Example of Nonlinear Utility Space for a Single Agent

17



C o n t r a c t s
U t i l i t y

Figure 3: Sampling Utility Space

C o n t r a c t s
U t i l i t y

Figure 4: Adjusting Sampled Contract Points

18



C o n t r a c t s
U t i l i t yT h r e s h o l d

C o n t r a c t p o i n t s f o r B i d s

B i d s ( s u m o f v a l u e s o f c o n s t r a i n t s )
Figure 5: Making Bids

19



C o n t r a c t sU t i l i t y

C o n t r a c t sU t i l i t y
T h e b e s t c o n t r a c t p o i n t

A g e n t a 1
A g e n t a 2T h e 2 n d b e s tc o n t r a c t p o i n t

Figure 6: Maximizing Social Welfare

Number of Issues

Terminated due to timeout

O
p

ti
m

al
it

y
 R

at
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8 9 10

SA HC

AR EX

Figure 7: Social welfare with nonlinear utility functions
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Figure 9: Scalability with the number of agents
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Figure 10: Failure rate with scaling-up of problems
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