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Abstract

This paper proposes a new combinatorial auction proto-
col called Average-Max-Minimal-Bundle (AM-MB) proto-
col. The characteristics of the AM-MB protocol are as fol-
lows: (i) it is strategyproof, i.e., truth-telling is a dominant
strategy, (ii) the computational overhead is very low, since it
allocates bundles greedily thereby avoiding an explicit com-
binatorial optimization problem, and (iii) it can obtain higher
social surplus and revenue than can the Max-Minimal-Bundle
(M-MB) protocol, which also satisÞes (i) and (ii). Further-
more, this paper extends the AM-MB protocol to an open
ascending-price protocol in which straightforward bidding is
an ex-post Nash equilibrium.

Introduction

Computational mechanism design (Dash, Jennings, &
Parkes 2003) has recently attracted much attention. In par-
ticular, auction mechanisms provide a convenient way to re-
alize an efÞcient allocation. This paper proposes a new com-
binatorial auction protocol called Average-Max-Minimal-
Bundle (AM-MB). The paper then extends the AM-MB pro-
tocol to an open-ascending price combinatorial auction. The
AM-MB protocol is a combinatorial auction that satisÞes
the condition of strategyproofness and requires very little
computational overhead since it does not solve a combina-
torial optimization problem. In the AM-MB based open-
ascending price combinatorial auction, sincere bidding is
ex-post a Nash equilibrium, and communication and com-
putational costs are low.
The AM-MB protocol is strategyproof. Namely, truth-

telling is a dominant strategy since this protocol is an in-
stance of a PORF protocol. The PORF (Price-Oriented Ra-
tioning Free) protocol is a generic combinatorial auction
protocol that satisÞes the conditions for strategyproofness
(Yokoo 2003). PORF is one of frameworks for designing
auction protocols. There have been several frameworks,
e.g., (Myerson 1981)(Gonen, Bartal, & Nisan 2003)(Lavi,
Mu�alem, & Nisan 2003), that account for the strategyproof.
An important feature of PORF is that allocations are com-
puted greedily, which generally leads to very low computa-
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tional costs1.
The AM-MB protocol beneÞts from the same compu-

tational expediency. In contrast, consider the well-known
Vickrey-Clarke-Groves (VCG) mechanism, applied to a
combinatorial auction setting. The mechanism requires the
solution to an explicit combinatorial optimization problem
(as part of the winner determination problem). Indeed, VCG
actually requires that we solve this difÞcult problem several
times for a single pricing calculation. For one pricing cal-
culation for n winners, we need n + 1 winner determination
calculations in VCG2.
The AM-MB protocol can obtain better social surplus and

revenue compared to an existing combinatorial auction pro-
tocol called Max-Minimal-Bundle (M-MB) (Yokoo 2003)
protocol. The M-MB protocol satisÞes the very desirable
false-name-proofness property. On the other hand, it suffers
from the possibility that the generated social surplus will be
very low. This is because the M-MB protocol uses the min-
imal bundles� maximum valuations to calculate payments.
Therefore, the payments tend to set at an unnecessarily high-
level. As a result, there may be bidders who may value an
item most and yet not be able to afford it. In the AM-MB
protocol, we propose a new pricing scheme that focuses on
the price of each item, not that of a bundle.
We extend the AM-MB protocol to an open-format proto-

col; in the resulting open ascending-price protocol, straight-
forward bidding is an ex-post Nash equilibrium. Open for-
mat auctions such as English, Dutch, and Ausubel types
are said to outperform sealed-bid format auctions (Ausubel
2002) in practice. For example, the VCG auction is clearly
not as popular as the ubiquitous English auction, though
the outcomes of these two auction formats are identical.
Ausubel argued that simplicity and privacy-preservation
seem to encourage more bidders to bid honestly and to pro-
vide the seller with a higher revenue (Ausubel 2002). This
simplicity allows bidders to understand the Ausubel protocol
more easily than the VCG auction. The privacy preservation
of the bidders� values encourages bidders to join auctions,
since they only need to reveal only parts of their demand

1Another important feature of PORF is false-name-
proofness(Yokoo 2003).

2In the single-good multiple unit auction, the paper(Kothari,
Parkes, & Suri 2003) shows a polynomial-time approximation
scheme. In this paper, we handle multiple-goods auctions.



curve. On the other hand, in sealed-bid formats, participants
may not be very comfortable about truthfully revealing their
entire set of private values, even though doing so is a domi-
nant strategy.
The above studies handle open ascending-price �multi-

unit� auctions. On the other hand, we proposed an open
ascending-price combinatorial auction based on AM-MB.
The proposed open ascending-price combinatorial auction
protocol is designed by applying the concept of options. An
option is the right to buy an item at the price announced at
the time the option is offered. This paper proves that the
prices obtained by our new open ascending-price combina-
torial protocol converge to the price obtained by the AM-
MB protocol. This means that the proposed open ascending
auction offers the same features in terms of social surplus
and seller�s revenue. Furthermore, this paper proves that
straightforward bidding is an ex-post Nash equilibrium in
the proposed open ascending auction.
Another advantage of the proposed open ascending-price

combinatorial auction is its low communication cost. In the
protocol, only a single price is announced to bidders in each
round, and each bidder declares only a set of items that
he/she might be interested in buying. In the protocol, bid-
ders do not need to declare 2m evaluation values as in many
other combinatorial auction schemes, e.g., VCG. In the pro-
posed open ascending auction, bidders need to submit their
demands on combinations of goods only once.
The rest of the paper is organized as follows. First,

the next section provides deÞnitions of some basic terms
throughout the paper as well as an explanation of the the
Price-Oriented, Rationing-Free (PORF) protocol. In the fol-
lowing section, this paper introduces the AM-MB protocol,
a one-shot sealed bid auction based on the PORF protocol.
Third, the AM-MB protocol is extended to an open ascend-
ing protocol that employs the AM-MB payment scheme.
The important features of our protocol are then proved.

Preliminaries
Problem Settings
This section gives the deÞnition of the domain model. A
set of bidders is N = {1, 2, . . . , n}. A set of items is
M = {1, 2, . . . , m}. Each bidder i has his/her preferences
for each bundle B ⊆ M . v(B, θi) is bidder i�s evaluation
value for bundle B. Here, θi is i�s true type. wB represents
the relative weight of bundle B. In this paper, for simplic-
ity, we assume wB = |B|. However, we can generalize the
AM-MB protocol in the case where the relative weights of
items/bundles can be different. We assume a quasi-linear,
private value model with no allocative externality. Further,
we assume free disposal.
Next, the concept of the minimal bundle is deÞned.

DeÞnition 1 (Minimal bundle) Bundle B is called mini-
mal for bidder i if for all B′ ⊂ B and v(B′, θi) < v(B, θi)
holds.

For example, suppose there are 3 items: 1, 2, and 3. If bidder
1 wants to obtain items in two distinct bundles, he tries to get
the two bundles {1,2} and {3}. If bidder 2 wants to obtain
items in a single bundle, she tries to get just one bundle, e.g.,

{1,2}. Here, bidder 1�s minimal bundles are {1,2} and {3},
while bidder 2�s minimal bundle is {1,2}.
PORF
The PORF (Price-Oriented Rationing Free) protocol is a
generic combinatorial auction protocol that satisÞes the
conditions for strategyproofness and false-name proofness
(Yokoo 2003). An outline of the PORF protocol can be de-
scribed as follows: (1) for each bidder, the payment of each
bundle of items is determined independently of his/her own
declaration, (2) the protocol allocates each bidder a bundle
that maximizes his/her utility independently of the alloca-
tions of other bidders, i.e., it�s rationing free. The PORF
protocol is deÞned as follows.

DeÞnition 2 (PORF protocol) Each bidder i declares
his/her type θ̃i, which is not necessarily the true type θi.
For each bidder i and for each bundle B ⊆ M , the pay-
ment ppo(B, i) is determined. This payment must be deter-
mined independently of i�s declared type θ̃i, but it might
be dependent on the declared types of the other bidders.
We assume ppo(∅, i) = 0 holds. Also, if B ⊆ B′, then
ppo(B, i) ≤ ppo(B′, i) holds. For bidder i, a bundle B∗ is
allocated where B∗ = arg maxB⊆M v(B, θ̃i) − ppo(B, i).
Bidder i pays ppo(B∗, i). If multiple bundles exist that max-
imize i�s utility, one of these bundles is allocated.

DeÞnition 3 (Allocation feasibility) The allocation must
be feasible, i.e., for bundles Bi and Bj allocated to bidders
i and j respectively, Bi ∩Bj �= ∅ holds. Thus, we show this
for the AM-MB protocol in Theorem1.

A PORF protocol is strategyproof since bidder i�s pay-
ment is determined independently of i�s declared type, and
he/she can obtain the bundle that maximizes his/her utility
independently of the allocations of other bidders. As a re-
sult, allocation feasibility is satisÞed. In this way, the PORF
protocol is rationing-free(Yokoo 2003).

Max-Minimal-Bundle (M-MB) Protocol
The M-MB protocol is an instance of the PORF protocol,
proposed by (Yokoo 2003). In the M-MB, the bidder i� s
payment for bundle B is deÞned as follows:

• ppo(B, i) = maxBj⊆M,j �=i v(Bj , θj), where B ∩Bj �= ∅
and Bj is minimal for bidder j.

Namely, the payment for bundle B is equal to the highest
evaluation value of a bundle that is minimal and intersects
with the items of bundle B. This pricing scheme satisfy
allocation feasibility (Yokoo 2003).

Average-Max-Minimal-Bundle (AM-MB)
Protocol

In this section we discuss the design of the Average-Max-
Minimal-Bundle (AM-MB) Protocol. This is also an in-
stance of the PORF protocol, so it satisÞes strategyproof
property. Consequently, here we deÞne the protocol by us-
ing true type θj . In the AM-MB Protocol, the bidder i�s
payment for bundle B is deÞned as follows:



DeÞnition 4 (AM-MB price) ppo(B, i) =
wB maxBj⊆M,j �=i v(Bj , θj)/wBj

, where B ∩ Bj �= ∅
and Bj is minimal for bidder j. wB is the size of bundle B.

Namely, the payment for bundle B is equal to the size
times the highest evaluation value of an item, which inter-
sects with the items of bundle B.

DeÞnition 5 (AM-MB protocol) The AM-MB protocol is a
PORF protocol (in the deÞnition 2) that instantiates the pay-
ment ppo(B, I) as the AM-MB payment in the deÞnition 4.

Theorem 1 AM-MB protocol satisÞes allocation feasibility.

We omit the proof due to space limitation.
We can consider the AM-MB protocol as a kind of greedy

allocation protocol, i.e., for each item l, only the bidder i
who has the highest average value v(i, Bi)/wBi

, where l ∈
Bi, has the right to obtain l.
The AM-MB protocol is a greedy allocation protocol. As

a result the computation required to execute this protocol
is very low compared to VCG. In VCG, we need to solve
a combinatorial optimization problem for winner determi-
nation. In fact, we need to solve the winner determination
problem n+1 times: n times with a single player (who is a
winner) missing from the problem, and once with all players
(who are winners) considered. Even for the worst case in the
AM-MB protocol, where every bundle is minimal for every
bidder, the AM-MB protocol does not compute a combina-
torial optimization problem.
The AM-MB protocol can obtain better social surplus and

revenue compared to M-MB. We show this in Section 5.
The AM-MB protocol cannot satisfy the condition of be-
ing false-name-proof, although the M-MB protocol is false-
name-proof.

Open Ascending-price Combinatorial Auction
based on AM-MB Protocol

Baseline Price and Bundle Price
In this section, we design the open ascending-price combi-
natorial auction based on the AM-MB protocol. First, we in-
troduce the baseline price and the bundle price. Second, we
present an example. Finally, we show the proposed protocol.
The baseline price is deÞned for each item. The baseline
price is employed for the ascending auction to periodically
increase prices for each item. The bundle price is deÞned
for each bundle. At most one bidder can receive a positive
beneÞt when purchasing the bundle at the bundle price.

DeÞnition 6 (Baseline price) For item l, (j∗, B∗) =
arg maxj∗∈N,B∗�l v(B∗, θj)/wB∗ , where B∗ is a mini-
mal bundle. The baseline price for item l is pbase(l) =
maxj �=j∗,B�l v(B, θj)/wB , where B is a minimal bundle.

Essentially, the baseline price is the second-highest average
value.
By using the baseline price, the bundle price for bundleB

is deÞned as follows:

DeÞnition 7 (Bundle price) p(B) = wB maxl∈B pbase(l)
Prices are non-linear (being deÞned for each bundle) and
anonymous (meaning the price is the same for all bidders).

Theorem 2 When applying the bundle price, for each bun-
dle there is at most one bidder who can receive a positive
utility.

We omit the proof due to space limitation.

Theorem 3 The allocation result of the AM-MB Protocol is
equivalent to the allocation result based on the bundle price.

Proof: In this proof, we show the followings:
(1)In the AM-MB protocol, if bidder i�s utility in obtain-

ing bundle B is non-negative, i.e., v(B, θi) ≥ p(B, i), then,
p(B, i) is equal to the bundle price p(B). Thus, in either
scheme, bidder i will obtain B if it maximizes bidder i�s
utility.
(2) In the AM-MB protocol, if bidder i�s utility in obtain-

ing bundle B is negative, i.e., v(B, θi) < p(B, i), then, the
bundle price p(B) is more than v(B, θi). Thus, in either
scheme, bidder i is not willing to obtain B.
In terms of (1), from the precondition, v(B, θi) ≥

p(B, i) = wB maxj �=i,B′ v(B′, θj)/wB′ , where B′ con-
ßicts with B and is minimal for bidder j. Therefore, for
each j �= i, v(B, θi)/wB ≥ v(B′, θj)/wB′ , where B′
conßicts with B and is minimal for bidder j. This equa-
tion means that for each item l ∈ B, i has the highest
average evaluation value, i.e., j∗ = i. Thus, pbase(l) =
maxj �=i,B′�l v(B′, θj)/wB′ , where B′ is a minimal bun-
dle. The deÞnition of p(B) is wB maxl∈B pbase(l). Thus,
p(B) = wB maxl∈B maxj �=i,B′�l v(B′, θj)/wB′ , where B′
is a minimal bundle.
We can omit l form the right side of this equation since

this equation holds for all l ∈ B. Thus we obtain
wB maxj �=i,B′ v(B′, θj)/wB′ , where B′ is a minimal bun-
dle and conßicts with B. This is identical to the deÞnition of
p(B, i). Thus, p(B, i) = p(B) holds.
In terms of (2), from the precondition, we obtain

v(B, θi) < p(B, i) = wB maxj �=i,B′ v(B′, θj)/wB′ , where
B′ conßicts with B and is minimal. Therefore, for some
j, B′, where j �= i and B′ conßicts with B, v(B, θi)/wB <
v(B′, θj)/wB′ holds. If B conßicts with B′ over the item l,
pbase(l) ≥ v(B′, θj)/wB′ > v(B, θi)/wBholds. Therefore,
p(B) ≥ wBpbase(l) > v(B, θi) holds. �

Example
Let us provide an example. First, we assume three items, 1,
2, and 3, and two players, player A and player B. Player A
has values of 10 for {1, 2} and 100 for {2, 3}. Player B has
values of 3 for {2} and 49 for {3}.
In the initial round, the price of each item is 0. Player A

declares {1, 2, 3} = {1, 2} ∪ {2, 3}, and player B declares
{2, 3} = {2} ∪ {3}. The temporal price pt is 0. Here, for
item 1, only player A declared {1, 2}. This is the case of 3-
(b). Thus, the baseline price for item 1 is decided as pt = 0.
Player A gets an option to buy item 1 at the price of 0. Then,
the provisional price pt continues to be increased ε.
When pt = 3, player A declares {1, 2, 3} = {1, 2} ∪

{2, 3}. Player B declares {3}. Since pt = 3, the temporal
price of bundle {1, 2} is 6 since the size of {1, 2} is 2. Also,
the prices of {2, 3}, {3}, and {2} are 6, 3, and 3, respec-
tively. Player B does not declare {2}, since her utility on
{2} is 0(= 3 − 3).



Here, for item 2, only player A declared {1, 2} or {2, 3}.
This is the case of 3-(b). Thus, the baseline price for item
2 is set as pt = 3. Player A gets an option to buy item 2 at
the price of 3. Then, the provisional price pt continues to be
increased ε. This continues until pt = 49 in this case. We
summarize this process in Table 1.

Table 1: Example

pt A�s bid B�s bid A�s opt. B�s opt.
0 {1, 2, 3} {2, 3} item 1
3 {1, 2, 3} {3} item 2
5 {2, 3} {3}
49 {2, 3} ∅ item 3

The auctioneer announces the baseline price for each item
and the bidders who have options to purchase items. Here,
player A has options to buy all items. This is step 4 in the
protocol. Player A calculates the prices and the utilities for
bundles. The baseline prices of options for items 1, 2, and
3 are 0, 3, and 49, respectively. According to deÞnition 7,
the prices of {1, 2} and {2, 3} are 6 and 98, respectively.
Player A�s utilities for {1, 2} and {2, 3} are 4(= 10−6) and
2(= 100 − 98). Thus, the auction is completed. Player A
purchases {1, 2} at price 6.

Protocol
The open Ascending-price Combinatorial Auction based on
AM-MB Protocol is designed as follows:

1. The auctioneer announces the current unit price, pt (the
initial unit price is 0). The temporal price pt(B) of bundle
B is calculated based on wB × pt.

2. Each bidder i is asked to declare a set of items Bi, where
he might be interested in buying item l ∈ Bi at the current
price pt. When bidder i uses a straightforward bidding
strategy, i includes item l in Bi if for some B 
 l, where
B is minimal and v(B, θi) > pt(B).

3.(a) When ∀i �= j, Bi ∩ Bj = ∅, if the baseline price for
item l has not been determined yet, we set the baseline
price pbase(l) for l to the current unit price pt. Player i
who declaresBi 
 l gets an option to buy item l. Go to
4.

(b) Otherwise, if there exists exactly one bidder i, such that
l ∈ Bi and the baseline price for item l has not been
determined yet, we set the baseline price pbase(l) for
l to the current unit price pt. Player i who declares
Bi 
 i gets an option to buy item l. Then, increasing ε
on the unit price, go to 1.

4. The auctioneer announces the baseline price for each item
and the bidders who have options to purchase items.

5. Each bidder declares the bundle that maximizes utility,
giving him or her a positive utility, and this includes an
item that the bidder has an option to buy. The price of
a bundle is calculated based on the deÞnition 7. Here,
bidders who declare a bundle that is not ∅ are prohibited

from purchasing nothing. This rule avoids stay-high bid-
ding (discussed in �Avoiding Stay-high Bidding� in the
next section ).

6. Each bidder is allocated the bundle declared by him/her.
We call the above steps 1 to 3 a �round.�

Features of the Protocol
Convergence on Baseline Price
Theorem 4 In the proposed open ascending-price combi-
natorial auction we proposed , if ε is sufÞciently small, and
each bidder declares the baseline price pbase(l) for each
item converges straightforwardly into the baseline price
pbase(l) deÞned in deÞnition 6.
Proof: For any item l, we assume pt = pbase(l) holds in

the k-th round (since ε is small enough, we can select such a
k). We show that when k′ < k, the auction does not Þnish.
Furthermore, in the k-th round, at most one bidder declares
that the bundle that includes l has a positive utility.
We derive a contradiction by assuming that at k′ < k,

(at most) one bidder declaring the bundle that includes
l remains. In this round, pt < pbase(l) holds. Thus,
in terms of pbase(l), for two bidders j∗ and j2nd =
arg maxj �=j∗,B�l v(j, B)/wB , where B is a minimal bundle,
and for bundle B∗ and bundle B2nd, v(j∗, B∗) > wB∗pt

and v(j2nd, B2nd) > wB2ndpt hold.
At least two bidders, j∗ and j2nd, have positive utilities of

bundle B∗ and bundle B2nd. Bundle B∗ and bundle B2nd

include l. This contradicts the assumption.
When k′ = k holds, pt = pbase(l) holds. According to

deÞnition 6, it is obvious that at most one bidder declares
that the bundle including l has a positive utility. �

Straightforward bidding is an ex-post Nash
equilibrium
Here, we prove that straightforward bidding, where bidders
bid truthfully in each iteration, constitutes an ex-post Nash
equilibrium. Namely, if all bidders except bidder i bid truth-
fully, then buyer i has no incentive to follow any strategy
other than the truth bidding strategy.
Assumption 1 (Revealed preference activity rule) The re-
vealed preference activity rule interprets bids in each round
as placing constraints on a buyer�s valuation, given a model
of straightforward bidding, and ensures that bids in each
round are consistent with some valuation function. Buyers
must conform to the activity rule to remain active in the auc-
tion.

Assumption 2 (Proxy agents) Proxy agents follow straight-
forward bidding strategies on the basis of partial value in-
formation. Proxy agents ensure that bids in each round
are consistent with some value function. Proxy agents must
maintain consistency so that bidders cannot change their
mind about their partial valuation if such a change would
also change an earlier decision made by the proxy agent.
Theorem 5 If bidders obey the revealed preference activ-
ity rule in assumption 1 or employ proxy agents in assump-
tion2, in the proposed open ascending auction, straightfor-
ward bidding is an ex-post Nash equilibrium.



Proof: Fix the strategies of other bidders to straight-
forward bidding. The valuations are v−i for all bidders
except i. By bidding truthfully, buyer i receives payoff
πAM−MB(vi, v−i) from the equivalence between AM-MB
payments and the open ascending auction payment. Con-
sider some non-truthful strategy from buyer i that is con-
sistent with v̂i via the revealed preference activity rule or
proxy agents. The open ascending auction will implement
the outcome of the AM-MB auction for valuations (v̂i, v−i).
However, buyer i will always prefer the AM-MB outcome
for valuations (vi, v̂−i) because the AM-MB protocol (an
instance of the PORF protocol) is strategyproof. Thus, in
the proposed open ascending auction, straightforward bid-
ding is an ex-post Nash equilibrium. �

Avoiding Stay-High Bidding
In step 5 of the protocol, bidders who declare a non-empty
bundle are prohibited from purchasing nothing. Note that
even if bidder i has an option to buy item l, bidder i can
choose not to buy item l. Therefore, bidder i can choose not
to buy anything even if i has one or more options. However,
if bidder i declares Bi �= ∅ at step 3 (a), then bidder i needs
to buy B ⊆ Bi, where B �= ∅.
Without this rule, as long as other bidders� strategies re-

main the same, the stay-high bidding strategy gives the same
utility as the straightforward/sincere bidding strategy. With
this rule, this is no longer true and using the stay-high bid-
ding strategy becomes a risky proposition.

Low Communication Cost
One advantage of the AM-MB-based open ascending-price
combinatorial auction is its low communication cost. In
each round of the protocol, only a single price is announced
to bidders, and each bidder declares only a single set of bun-
dles. Bidders do not need to declare 2m evaluation values in
general combinatorial auctions, e.g., VCG.

Social Surplus and Revenue
In this section, we compare the AM-MB and M-MB proto-
cols in terms of generated social surplus and revenue. We as-
sume that each bidder has exaxtly one minimal bundle. This
means that each bidder is single-minded. We say bidder i
is single-minded if i requires only one bundle. Therefore,
we determine the size of the minimal bundle by using an ex-
ponential distribution de(k) = Ce−pk(Fujishima, Leyton-
Brown, & Shoham 1999). By using this distribution, many
small minimal bundles are created. The probability that a
size k bundle is created is ep times larger than that of a size
k + 1 bundle. The items included in the minimal bundle
are randomly selected, and the evaluation value for the min-
imal bundle is randomly selected from [0, k]. This setting
reßects the situation in which bidders tend to hope to pur-
chase small bundles. For example, on the Internet, many
unspeciÞed people can attend an auction, and they tend to
submit bids for different small bundles.
The experimental environment is written in JDK1.4.2 on

MacOS 10.3 and a PowerPC G4/dual machine. To com-
pute VCG payments, we employ several pruning meth-

ods, e.g., BINs and dominant sets pruning, with the CASS
method(Fujishima, Leyton-Brown, & Shoham 1999).
Figure 1 and Figure 2 show experimental results. The

number of items are 7. There are 27 possible bundles. We
created 1,000 different problems and show the averages of
the social surplus and seller�s revenue by varying the num-
ber of players. Both the proposed open ascending auction
and AM-MB protocols can achieve equivalent social surplus
and revenue.
In Figure 1, the vertical axis shows the ratio of social sur-

plus compared with the optimal social surplus that can be
calculated by VCG. �M-MB SS� and �AM-MB SS� mean
the M-MB protocol�s social surplus and the AM-MB proto-
col�s social surplus, respectively. The horizontal axis shows
the number of players. AM-MB can attain 85 to 95 % of the
efÞcient social surplus. Furthermore, AM-MB�s social sur-
plus is almost always larger than M-MB�s social surplus. In
particular, when the number of players is 20 to 40, AM-MB
can work better than M-MB. This is because M-MB tends to
overestimate the prices of bundles compared with AM-MB.
AM-MB carefully calculates the bundle prices as the bundle
size times the average evaluation value for each good in the
bundle and then chooses the maximum price. M-MB sim-
ply uses the bundles� valuation values as the bundle prices
and chooses the maximum price. Here, the social surplus
decreases after 40 players, since we assume single-minded
players. As the number of players increases, so too does
the possibility of adequate allocation. Namely, while AM-
MB can succeed in making adequate allocations in the early
stage, in terms of the number of players, VCG and M-MB
can succeed after 40 players.

Figure 1: Experimental Results: Social Surplus

In Figure 2, the vertical axis shows the ratio of revenue
compared with the revenue calculated by VCG. �M-MB
RE� and �AM-MB RE� mean the M-MB protocol�s revenue
and the AM-MB protocol�s revenue, respectively. The hori-
zontal axis shows the number of players. As with the case of
social surplus, when the number of players is 20 to 40, AM-
MB can work better than M-MB. This is because the prob-
ability of a successful allocation increases with the number
of players. Furthermore, both AM-MB and M-MB can gain
more revenue than VCG. This is because both AM-MB and
M-MB overestimate the prices compared with VCG.



Figure 2: Experimental Results: Revenue

AM-MB�s revenue is almost always larger than M-MB�s
revenue. At the maximum, AM-MB�s revenue is 1.25 times
as large as M-MB�s revenue. Namely, AM-MB increases the
social surplus and revenue over those values of M-MB when
players are single-minded and tend to prefer small bundles.

Improving Social Surplus
For the case of two bidders A and B with bundles as {1, 2}
and {2, 3} and both the valuations being 10, the protocols
proposed above does not allocation item 2. To increase the
social surplus, we can slightly modify the protocol so that
both bidders can obtain the option. A similar modiÞcation
can be applied to the AM-MB protocol.
In the improved AM-MB protocol, bundle B that maxi-

mizes player i�s utility (that includes 0) is allocated to player
i. In the improved open ascending protocol, we can improve
the following three points: (1) Each player declares his de-
mand which is an union set of bundles that give non-negative
utility to him. (2) Suppose two or more bidders declare de-
mands for one item in round r. If the demand decreases to
0 in the next round r + 1, the improved protocol gives op-
tions to the bidders who declared demands in the round r.
(3) Each bidder selects a bundle that maximizes his utility
(that includes 0). Overlaps among bidders can be happened
when their utilities are 0. In this case, the improved protocol
randomly select one bidder to assign a bundle.

Related Work
Our AM-MB-based open ascending-price combinatorial
auction provides low computational cost without optimiza-
tion. Moreover, straightforward bidding is an ex-post Nash
equilibrium. No existing protocol offers both of these char-
acteristics. The following works are open ascending-price
combinatorial auctions that have other objectives: iBun-
dle (Parkes & Ungar 2000) was efÞcient for straightfor-
ward bidder strategies, but only those for which straight-
forward bidding was not in equilibrium. iBundle Extend
& Adjust (iBEA)(Parkes & Ungar 2002) extended iBundle
to implement the outcome of VCG. iBEA needs to solve
winner determination problems in each round. Another pa-
per (Iwasaki, Yokoo, & Terada 2005) proposed an open
ascending-price multi-unit auction called AOP that is robust

against false-name bids. In Ausubel�s ascending-price proxy
auction, when bidders employ sincere bidding proxies, the
results converge into a core (Ausubel & Milgrom 2002).

Conclusions
In this paper, we proposed the AM-MB protocol and ex-
tended it to an open ascending combinatorial auction. The
AM-MB protocol is strategyproof while being computation-
ally inexpensive because of its greedy allocation method.
The experimental results show that the AM-MB protocol
can obtain higher social surplus and revenue than the M-MB
protocol. As future work, we intend to investigate how ef-
fectively the AM-MB protocol can be applied to situations in
which the expertise of bidders in assessing their valuations
for goods is asymmetric.
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