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ABSTRACT
Internet auctions are becoming an especially popular part of
Electronic Commerce and auction protocols have been stud-
ied very widely in the field of multi-agent systems and AI.
However, correctly judging the quality of auctioned goods
is often difficult for non-experts (amateurs), in particular,
on the Internet auctions. In this paper, we formalize such
a situation so that Nature selects the quality of the auc-
tioned good. Experts can observe Nature’s selection (i.e.,
the quality of the good) correctly, while amateurs including
the auctioneer cannot. In other words, the information on
Nature’s selection is asymmetric between experts and ama-
teurs. In this situation, it is difficult to attain an efficient
allocation, since experts have a clear advantage over ama-
teurs and they would not reveal their valuable information
without some reward. Thus, in this paper, we develop a
new auction protocol in which truth-telling is a dominant
strategy for each expert. This can be done by putting these
experts in a situation similar to Prisoner’s Dilemma. If they
cooperate and tell lies, they can exclude amateurs, but be-
traying is a dominant strategy. By making experts to elicit
their information on the quality of the good, the protocol
can achieve a socially desirable, i.e., Pareto efficient alloca-
tion if certain assumptions are satisfied.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems; K.4.4 [Computers and So-
ciety]: Electronic Commerce

General Terms
Auctions, Economics, Multiagent Systems
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1. INTRODUCTION
Auctions have been studied very widely in the field of

multi-agent systems for several reasons. First, agent-mediated
electronic marketplaces [2] (e.g., eMediator[9], AuctionBot[10],
and GroupBuyAuction[11]) employ auction mechanisms to
realize an efficient trading mechanism among agents. Sec-
ond, auction mechanisms can provide efficient task/resource
allocation mechanisms in multi-agent systems[1, 3]. Third,
Internet auctions such as eBay.com and Yahoo.com in the
real world are becoming an especially popular part of the
Internet economy.

For non-experts (amateurs), it is often difficult to cor-
rectly judge the quality of auctioned goods. In particular,
on the Internet auctions, there exist many unspecified per-
sons who are selling their goods. If we misjudge the quality
of a good and purchase a poor quality item at a high price,
we suffer loss by the trade. We can avoid such a situation
if the auctioneer can judge the quality correctly, but this is
not always the case or it might require too high cost for the
auctioneer.

The situation described above can be modeled by using
the notions of Nature’s selection and asymmetric informa-
tion in game theory. We assume Nature selects the quality
of an auctioned good. Experts can observe the result of
Nature’s selection, while amateurs including the auctioneer
cannot. In other words, the information on Nature’s selec-
tion is asymmetric between experts and amateurs.

For example, in art auctions, in which a painting is auc-
tioned, the painting can be real or an imitation. We assume
Nature selects the quality of the good, i.e., real or imitation.
Nature is a pseudo-player who selects random action in the
auction with specified probabilities [8]. There are two types
of bidders, experts and amateurs. While experts can tell
whether the good on sale is real or imitation, amateurs can-
not. Clearly, the value of the painting depends on whether
it is real or not.

It would be beneficial for an amateur if the protocol al-
lowed a conditional bid, e.g., “If the painting is real, then
I’ll pay at most $6,000. If it is an imitation, I’m not willing
to pay more than $40.” On the other hand, if the bidder
is sure about the quality of the good, i.e., he is an expert,



he can submit an unconditional bid, e.g., “I’m sure that the
painting is real and am willing to pay at most $5,000.” If
the protocol can correctly determine the quality of the good
based on these declarations, an amateur can purchase the
good without the risk of incurring a loss, even if he is not
sure about the quality.

The difficulty in developing such a protocol is that experts
have a clear advantage over amateurs and they would not
reveal their valuable information without some reward. We
cannot simply apply the Clarke mechanism (a.k.a. Vickrey-
Clarke-Groves mechanism) [5] since the auctioneer does not
know the quality of the good and cannot determine the social
surplus, i.e., the highest (or the second highest) evaluation
values.

It might be possible to pay some reward or side-payment
to make the experts reveal their information on Nature’s
selection. However, the payment must be large enough so
that each expert has an incentive for telling the truth. How-
ever, if the payment becomes large, an amateur might have
an incentive for pretending to be an expert to obtain the
reward.

In this paper, we propose a new direct revelation protocol,
in which for each expert, truth-telling is a dominant, i.e.,
optimal strategy regardless of the actions of other agents.
In the art auction of a painting, our new protocol can be
described as follows.

If two or more experts say that the painting is real, the
auctioneer assumes the painting is real and applies the Clarke
mechanism, i.e., the agent who declares the highest evalua-
tion value assuming the painting is real wins and pays the
value of the second highest bid. Also, if no expert says the
painting is real, the auctioneer assumes the painting is an
imitation and applies the same procedure using the values
for an imitation. An exceptional case is when there is only
one expert who says the painting is real. In this case, the
protocol sells the good to that expert, if his declared value
is larger than the other agents’ evaluation values for an im-
itation.

An interesting point of this protocol is that the experts
are in a situation similar to Prisoner’s Dilemma. Let us as-
sume the painting is real. If they cooperate and tell lies,
i.e., the painting is an imitation, they can exclude amateurs
from the auction, but betraying, i.e., declaring the painting
is real, is a dominant strategy for an expert. More specifi-
cally, assuming there are only two experts, 1 and 2. When
expert 2 cooperates, i.e., declares that the painting is an
imitation, expert 1 would be better off betraying, since the
exceptional case would then be applied and expert 1 could
buy the painting without paying the price for a real good.
When expert 2 betrays, then expert 1 has no chance to win
the good if he declares the painting is an imitation, thus
he would be better off betraying. In either case, expert 1
would be better off betraying. By making experts to elicit
their information on the quality of the good, the protocol
can achieve a socially desirable, i.e., Pareto efficient alloca-
tion if certain assumptions are satisfied.

The rest of the paper is organized as follows. We first de-
scribe the model of a domain under asymmetric information
on Nature’s selections and present the difficulty of applying
the Clarke mechanism to this problem. Next, we explain
an auction mechanism in a simple case under our domain
in order to clearly present our concept. Then, we propose
a generalized auction mechanism under asymmetric infor-

mation on Nature’s selections. Finally, we discuss how in
our mechanism experts are confronted with the Prisoner’s
Dilemma, and compare our mechanism with other related
work.

2. PRELIMINARIES
Below, we define the basic terms used in this paper.

Participants. We assume two types of participants, experts
and amateurs. The expert is the player who has correct
information on Nature’s selection. The amateur is the player
who does not have an idea on Nature’s selection. Also, we
define irrational players. Irrational players may not select a
dominant strategy when it exists.

Private Value Auctions. In this paper, we concentrate on
private value auctions[5]. Note that private value in this pa-
per has a slightly different meaning from that in traditional
definition. In traditional definitions[5], in private value auc-
tions, each agent knows its own evaluation values of a good,
which are independent of the other agents’ evaluation val-
ues. Agent i’s utility ui is defined as the difference between
the true evaluation value bi of the allocated good and the
payment to the seller ti for the allocated good. Namely,
ui = bi − ti. Such a utility is called a quasi-linear utility.

In this paper, if an agent cannot observe Nature’s selec-
tion (i.e., an amateur), there is a dependency between his
utility and other agents’ evaluation values. If an agent can
observe Nature’s selection (i.e., an expert), his utility is in-
dependent of the other agents’ evaluation values and has no
uncertainty. Further, once an amateur learns Nature’s se-
lection, his utility is independent of the other agents’ eval-
uation values and has no uncertainty. Formally, agent i’s
utility ui is defined as the difference between the true eval-
uation value bi,q of the allocated good for the determined
Nature’s selection q and the payment to the seller ti for the
allocated good. Namely, ui = bi,q − ti.

Pareto Efficiency. We say an auction protocol is Pareto ef-
ficient when the sum of all participants’ utilities (including
that of the auctioneer), i.e., the social surplus, is maximized
in a dominant strategy equilibrium. In a more general set-
ting, Pareto efficiency does not necessarily mean maximiz-
ing the social surplus. In an auction setting, however, agents
can transfer money among themselves and the utility of each
agent is quasi-linear; thus the sum of the utilities is always
maximized in a Pareto efficient allocation. If the number
of goods is one, in a Pareto efficient allocation, the good
is awarded to a bidder having the highest evaluation value
corresponding to the quality of the good.

Best Response. Player i’s best response to the strategies
chosen by the other players is the strategy that yields him
the greatest utility[8].

Dominant Strategy. The strategy s is a dominant strategy
if it is a player’s strictly best response to any strategies the
other players might pick, in the sense that whatever strate-
gies they pick, his payoff is highest with s. In addition,
strategy s′ is weakly dominated if there exists some other
strategy s′′ for player i which is possibly better and never
worse, i.e., yielding a higher payoff in some strategy and



never yielding a lower payoff[8].

3. DOMAINDEFINITIONSUNDERASYM-
METRICINFORMATIONONNATURE’S
SELECTIONS

In this section, we define the domain model under asym-
metric information on Nature’s selections. In the following,
we define several terms and notations.

• A set of agents is represented by I = {1, . . . , n}.
• A set of Nature’s selection is represented by

Q = {q1, q2, . . . , qm}.
• The number of goods auctioned is one. Namely, the

proposed auction is a single-unit auction.

• Agent i’s utility is represented by ui = bi,q − ti. bi,q

is agent i’s evaluation value of the good for Nature’s
selection q. ti is agent i’s payment. This type of util-
ity is called a quasi-linear utility. If an agent cannot
obtain a good, we assume its utility is 0.

• The evaluation value of the good depends on Nature’s
selection.

• Player i’s type θi is represented by a vector
θi = (bi,q1 , bi,q2 , bi,q3 , . . . , bi,qm).

• A set of experts is represented by E ⊂ I. Experts can
observe Nature’s selection. We suppose | E |≥ 1.

• A set of amateurs is represented by N ⊂ I. I−N = E.
Amateurs cannot observe Nature’s selection.

• The mechanism designer cannot observe Nature’s se-
lection and cannot differentiate between experts and
amateurs.

We design an auction protocol under the following as-
sumption.

Assumption 1. For all i, q, q′, where q < q′, bi,q ≤ bi,q′ .

This assumption means that it is not worse for agents if Na-
ture’s selection is higher. In other words, all agents value
the possible outcomes of Nature’s selection in the same or-
der. For example, for a player, the evaluation value for a
real painting is higher than the evaluation value for an im-
itation. Although this assumption is very realistic, there
is a difficulty in realizing an auction mechanism in which
the experts’ dominant strategy is telling the truth. This as-
sumption allows overlap between evaluation values at two
or more different Nature’s selections

However, if there is an overlap between evaluation values
at two or more different Nature’s selection, there is a prob-
lem. Table 1 shows an example in which there are overlaps
of evaluation values between different Nature’s selections.
θ2’s evaluation value for an imitation, $500, is higher than
θ1’s evaluation value for a real item, $400.

We assume that an expert declares a pair composed of the
observed Nature’s selection and his private evaluation value
of the good. An amateur declares only his private evalua-
tion value of the good. Also, let us assume the mechanism
first judges Nature’s selection. Then, the mechanism uses

Table 1: Example of Overlapped Evaluation Values
qI : imitation qR: real

θ1 $300 $400
θ2 $500 $650
θ3 $700 $800

the second price scheme (Vickrey auction) within evalua-
tion values in the judged Nature’s selection. Namely, if the
mechanism judges that Nature’s selection is an imitation,
the winner is the bidder who submitted the highest bid in
that Nature’s selection and the payment is the second high-
est bid for that Nature’s selection.

There are three players whose types are θ1, θ2, and θ3.
Suppose that there is an amateur whose type is θ1 and ex-
perts whose types are θ2 and θ3. Suppose that expert θ2

submits the bid (θ2, qR), $650, i.e., declares that the good is
real. Suppose that expert θ3 submits the bid (θ3, qI), $700,
i.e., declares that the good is an imitation. Since the ama-
teur cannot observe Nature’s selection, his payment depends
on the true Nature’s selection. If the mechanism believes ex-
pert θ2’s judgement that Nature’s selection is real and sells
the good at $400 (the second highest bid in real within $400
and $650), expert θ2 can benefit if the good is an imitation.
While expert θ2’s evaluation for an imitation is $500, he can
purchase the good at $400. If the mechanism believes expert
θ3’s judgement that Nature’s selection is an imitation and
sells the good at $300 (the second highest bid in real within
$300 and $700), he can benefit if the good is real. While
expert θ3’s evaluation for real is $800, he can purchase the
good at $300.

To solve the above problem, in the next section, we present
an auction mechanism under asymmetric information on Na-
ture’s selections. In this mechanism, we successively make
experts declare the true Nature’s selection and the true eval-
uation value for a good.

The Clarke mechanism (a.k.a. Vickrey-Clarke-Groves mech-
anism)[5] is a well-known mechanism in which truth-telling
is the dominant strategy for each player and the obtained
allocation is Pareto efficient.

However, we cannot employ the Clarke mechanism in our
problem settings. In the Clarke mechanism, the allocation
that maximizes the social surplus is chosen, and each agent
i pays the decreased amount of the social surplus for other
agents caused by the participation of agent i. Since the
auctioneer does not know Nature’s selection, he cannot know
the social surplus of possible allocations.

We can modify the Clarke mechanism so that the auc-
tioneer simply assumes that the largest declared Nature’s
selection is true. In the case of Table 1, suppose that there
is an amateur whose type is θ3 and experts whose types are
θ1 and θ2. Suppose that expert θ1 submits the bid (θ1, qI),
$300, i.e., declares that the good is an imitation. Suppose
that expert θ2 submits the bid (θ2, qR), $650, i.e., declares
that the good is real. Suppose that amateur θ3 submits a
conditional bid. The auctioneer assumes the good is real,
i.e., the maximum Nature’s selection, and chooses the al-
location that maximizes the social surplus, i.e., allocating
the good to θ3. The payment of θ3 is $650, i.e., the second
highest value. This result looks fine. However, we are faced
with a difficulty when calculating the payment/reward of θ2.
If θ2 did not participate, the auctioneer would assume that



Nature’s selection is imitation and allocate the good to θ3,
and the social surplus would be considered to be $700. If
we assume θ2 increases the social surplus to $800, i.e., the
evaluation value of θ3 for a real good, by its participation,
we need to pay compensation money, say $100, to θ2.

However, paying such compensation money causes more
difficulties. First, the amount of compensation money can
be larger than the payment, thus the auctioneer might lose
money. Second, by paying compensation money, the mecha-
nism gives an agent an incentive for over-declaring Nature’s
selection and obtaining compensation. For example, if the
good is an imitation and θ2 tells the truth, it can obtain
nothing and its utility is 0, but if θ2 says the good is real,
it can obtain the compensation. Thus, in this modification
of the Clarke mechanism, truth telling is not a dominant
strategy.

4. DESIGNINGTHEAUCTIONPROTOCOL

4.1 Protocol: two levels of Nature’s selection
In this section, we present an auction protocol in which

truth telling is a dominant strategy. First, in order to clearly
show our concept, we present a protocol in the simple ex-
ample of an art auction. Then, in the next section, we gen-
eralize the protocol.

In art auctions, the quality of the good is Nature’s se-
lection. Let us assume two qualities, qR (i.e., real) and qI

(i.e., imitation). Namely, there exist two levels of Nature’s
selection. The sets of the evaluation values for qR and qI

submitted by experts are represented by BE,R and BE,I , re-
spectively. The sets of the evaluation values for qR and qI

submitted by amateurs are represented by BN,R and BN,I ,
respectively. The upper limit for Nature’s selection qI is
represented by αqI . Evaluation values in qI cannot exceed
the upper limits αqI . We assume the upper limit is given.
We classify the procedure into the following three cases:

case 1: If nobody declares qR (i.e. real), the mechanism de-
termines that the quality of the good is qI . The winner
is the bidder i who submits the maximum evaluation
value within BE,I and BN,I . If i wins, i’s payment is
the second highest evaluation value within BE,I and
BN,I .

case 2: If the number of agents who declare qR (i.e. real) is
one, the mechanism does not determine the quality of
the good. If bi,qR , the evaluation value of the expert
i who declares qR, is higher than the maximum eval-
uation value within BE,I and BN,I , the winner is i.
The payment is the maximum evaluation value within
BE,I and BN,I . If not, the mechanism does not trade
anything.

case 3: If two or more experts declare qR (i.e. real), the
mechanism determines that the quality of the good
is qR. The winner is the bidder i who submits the
maximum evaluation value in BE,R, BN,R, and αqI .
If αqI is the maximum value, the mechanism does not
trade anything1. If i wins, the payment is the second
highest evaluation value within BE,R, BN,R, and αqI .

1The case in which αqI is the maximum value is an ex-
tremely rare case. This case happens when an auctioneer
fails to set an appropriate upper value, e.g., extremely high
value and for every participants there is no evaluation value

4.2 Examples
The following examples of art auctions clarify our con-

cepts. For simplicity, we assume that there are two types
of possible Nature’s selection, real or imitation. Also, we
assume that there are three kinds of participant types, as
shown in Table 2. α means the upper limit for Nature’s
selection. In Example 1 and Example 2, α can be ignored.

Table 2: Example of Simple Cases
qI : imitation qR : real

θ1 $30 $11,000
θ2 $40 $12,000
θ3 $50 $15,000
α $100

Example 1. There are two amateurs whose types are θ1 and
θ2. Also, there is an expert whose type is θ3. In this case,
the amateurs submit the bids (θ1, 0) and (θ2, 0). The second
argument, 0, in each pair declares that they are amateurs.
If the expert declares this good is real, he submits (θ3, qR).
In this case, since there is only one expert, we employ case
2. Then, this expert wins this auction, and his payment is
$40.

Example 2. There is an amateur whose type is θ1. Also,
there are two experts whose types are θ2 and θ3. In this case,
the amateur submits the bid (θ1, 0). If both of the experts
declare this good is real, they submit the bids (θ2, qR) and
(θ3, qR). Since there are two experts, we employ case 3.
Then, the expert whose type is (θ3, qR) wins the good, and
his payment is $12,000.

Table 3 shows the information from Table 1 with upper
limits. For each Nature’s selection, we provide upper limits.
The upper limits are given before an auction starts. By
using the upper limits we can make experts tell the truth.

Table 3: Example of Overlapped Evaluation Values
with Upper Limits

qI : imitation qR : real
θ1 $300 $450
θ2 $500 $850
θ3 $800 $1000
α $800

Example 3. Let us assume this good is an imitation. The
experts whose types are θ1 and θ2 declare that this good is
real. They submit the bids (θ1, qR), $450 and (θ2, qR), $850.
The expert whose type is θ3 declares that this good is an
imitation. He submits the bid (θ3, qI), $800. Namely, this
expert tells the truth.

When we employ the protocol with the upper limit, case 3
is applied since there are two experts who declare the good
is real. In case 3, the winner is the bidder who declares
the maximum bid in BE,R, BN,R, and α. In this example,
the expert who declares (θ2, qR),$850 is the winner. The

that is larger than αqI . However, in this case, the mecha-
nism cannot satisfy Pareto efficiency.



payment is the second highest value, $800, among BE,R,
BN,R, and α.

In the following, we demonstrate that there is the problem
when we employ the same protocol without the upper limit.
Namely, In case 3, the winner is the bidder who declares
the maximum bid in BE,R and BN,R. The payment is the
second highest value among BE,R and BN,R. In this case,
the winner is θ2 and the payment is 450. If θ2 declares
the truth, case 2 is applied. In case 2, θ2 has no chance
to win the good. As same as the example, if θ2 declares a
falsehood, the payment is 450. The problem is that, in this
case, since θ2’s evaluation value for an imitation is 500, he
profits 50(= 500 − 450). Thus, θ2 profits from declaring a
falsehood.

To solve the above problem, we employ the upper limit
α = 800. By using the upper limit, even if θ2s tell a false-
hood, he can not make a profit.

4.3 Dominant Strategy for Experts
In this section, we demonstrate that for experts truth

telling is a dominant strategy in our protocol.

Theorem 1. In our mechanism, truth telling is a (weakly)
dominant strategy for the experts.

Proof (Outline). In the proof, we confirm that false
bids must not result in positive utility for expert i or must
result in a payment that equals the payment that he makes
at the true value. The details of the proof are shown in
Appendix A.

4.4 Best Response for Amateurs

Assumption 2. There exist two or more (in the gener-
alized case, there exist k, where k is a given threshold, or
more) experts and they correctly select a dominant strategy.
In addition, there exist one or less (in the generalized case,
there exist k − 1 or less) irrational players.

Theorem 2. Under assumption 2, for amateurs, truth
telling is the best response.

Proof (Outline). Under assumption 2, we prove that
for amateur i, telling the truth is best response. Under
assumption 2, amateurs have the following two strategies,
telling the truth, i.e., declaring they are amateurs, or
telling a falsehood, i.e., declaring they are experts.

First, when the amateur declares truth, obviously there is
no benefit even if he declares false evaluation values. Next,
in the following, we prove that even if the amateur tells a
falsehood, there is no benefit for him. (1)We prove that if
case 1 or case 3 is satisfied without amateur i, his utility is
not positive if he declares, as an expert, a larger Nature’s
selection than the true Nature’s selection. (2)We prove that
if case 2 is satisfied without amateur i, there is no benefit
for him. In this case, there is obviously another amateur
who declares he is an expert.

We show the details of the proof in the generalized case
in Appendix B.

Theorem 3. Under assumption 2, our mechanism is Pareto
efficient.

Proof (Proof of Theorem 3). Under assumption 2, the
condition in case 2 cannot be satisfied. Thus, we consider
only case 1 and case 3. In case 1 and case 3, since the
good is awarded to the player who has the maximum eval-
uation value, our mechanism realizes a Pareto efficient allo-
cation.

4.5 Robustness against Irrational Players
In this section, we present robustness against irrational

players. First, we define irrational players.

Theorem 4. Under assumption 2, even if there exist ir-
rational players, if their number is 1 (in the generalized case
smaller than the threshold), the utilities of rational players
are not negative.

Proof (Outline). We demonstrate that when rational
players can win the good, the payment is determined based
on the correct Nature’s selection. When they cannot win
the good, the utility is 0 and is not negative. Thus, we
prove that if there exists one irrational player, the utilities
of rational players are not negative. We have omitted the
details of the proof here due to the limitation of space. In
Appendix C, we show the details in the generalized case.

5. GENERALIZED PROTOCOL

5.1 Protocol: multiple levels of Nature’s selec-
tion

In this section, we present a generalized protocol. qx

means that Nature’s selection is x. The maximum and sec-
ond Nature’s selections submitted are represented by qmax

and qsecond, respectively. The number of experts who de-
clare qmax is represented by p. The set of the evaluation
values for qx submitted by experts is represented by BE,qx .
The set of the evaluation values for qx submitted by ama-
teurs is represented by BN,qx . The upper limit for Nature’s
selection qx is represented by αqx . We assume the upper
limit is given. k is a threshold value. In the basic idea, if
the number of experts who declare the same Nature’s selec-
tion q is larger than k, we assume that Nature’s selection is
q.

We classify the procedure into four cases based on the
number of experts who declare qmax. The protocol proposed
in this paper is defined as follows.

case 1: If qmax equals to q1, the mechanism determines that
Nature’s selection is q1. The winner is the bidder i who
submits the maximum evaluation value within BN,qmax

and BE,qmax . The payment is the second highest eval-
uation value within BE,qmax and BN,qmax .

case 2: If p = 1, the mechanism does not determine Na-
ture’s selection. If be,qmax , the evaluation value of the
expert e who declares qmax, is higher than the max-
imum evaluation value within BE,qsecond , BN,qsecond ,
and αqsecond−1 , the winner is the expert e. The pay-
ment is the maximum evaluation value within BE,qsecond ,
BN,qsecond , and αqsecond−1 , If not, the mechanism does
not trade anything.

case 3: If 2 ≤ p ≤ k − 1, the mechanism does not de-
termine Nature’s selection. If be,qmax , the evaluation



value of the expert e who declares qmax, equals the
maximum evaluation value within BE,qmax , BN,qmax ,
and αqmax−1 , then the winner is the expert e. The
payment is the second highest evaluation value within
BE,qmax , BN,qmax , and αqmax −1 . If not, the mechanism
does not trade anything.

case 4: If p ≥ k, the mechanism determines that Nature’s
selection is qmax. The winner is the bidder i who sub-
mits the maximum evaluation value within BE,qmax ,
BN,qmax , and αqmax−1 . The payment is the second
highest evaluation value within BE,qmax , BN,qmax , and
αqmax −1 .

5.2 Dominant Strategy for Experts
In this section, we show that, in the generalized case, for

experts truth telling is a dominant strategy. Truth telling
means an expert submits his true Nature’s selection and its
evaluation value.

Theorem 5. In our mechanism, truth telling is a (weakly)
dominant strategy for the experts.

Proof (Outline). In the proof, we confirm that false
bids must not result in positive utility for expert i or must
result in a payment that equals the payment that he makes
at the true value. The main idea for this proof is the same
as in proof 4.3. Since the details of the full proof are fairly
long, we provide the proof at our Web site
(http://www.jaist.ac.jp/~itota/AAMAS2002/).

5.3 Best Response for Amateurs

Assumption 3. There exist k, where k is a given thresh-
old, or more experts, and they correctly select a dominant
strategy. In addition, there exist k − 1 or less irrational
players.

Theorem 6. Under assumption 3 for amateurs, truth telling
is the best response.

Proof (Outline). The outline of this proof is almost
the same as proof of theorem 2 in the simple case, i.e., where
k = 2 and there exist two levels of Nature’s selection. The
details of the proof in the generalized case are shown in
Appendix B.

Theorem 7. Under assumption 3, our mechanism is Pareto
efficient.

Proof (Proof of Theorem 7). The proof is the same
as proof of theorem 3.

5.4 Robustness against Irrational Players
In this section, we describe robustness against irrational

players in the generalized case.

Theorem 8. Under assumption 3, even if there exist ir-
rational players, if their number is smaller than the threshold
k, the utilities of rational players are not negative.

Proof (Outline). The outline of this proof is almost
the same as proof of theorem 4 in the simple case. The
details are shown in Appendix C.

6. DISCUSSION

6.1 Prisoner’s Dilemma among Experts
One of the interesting aspects of our mechanism is that

experts are confronted with the Prisoner’s Dilemma situa-
tion[4]. Suppose there is an art auction and the painting
is real. Experts have two strategies: telling the truth, i.e.,
the painting is real, qR, or telling a lie, i.e., the painting
is an imitation, qI . This corresponds to the case in which
the number of levels is two and k = 2 (described in Section
4.1). For example, suppose there exist two experts and their
evaluation value for real is $101, ($101,qR). Also, suppose
there exist some amateurs who evaluate real as $60, ($60,
0) and imitations as $0, ($0, 0). Table 4 shows an example
of a payoff matrix for this setting.

In this example, if experts can cooperate, i.e., together de-
clare that the painting is an imitation, they have a chance
to win the painting at a lower price, i.e., higher utilities.
Namely, if they cooperatively declare ($1,qI), i.e., tell a false-
hood, then they can win the painting at the price of $1. The
expected utilities are (50,50) (we assume, here, in the case
of a tie-break that they share the utility). If one of the two
experts betrays, and declares ($101, qR), then this expert
can win the good at the price $1. Its expected utility is 100.
If both of the experts betray, i.e., tell the truth, and declare
($101, qR), then the experts can win the good at the price
$101. The expected utilities are (0,0). In our mechanism,
for each expert, telling the truth, i.e., declaring the painting
is real, is a dominant strategy.

Table 4: Example of Payoff Matrix in Our Auction
Expert 1

Expert 2
qI : imitation qR : real

qI : imitation (50,50) (0,100)
qR : real (100,0) (0,0)

6.2 Related Work
As related work, in a previous paper one of the authors in-

vestigated information revelation in ascending-bid auctions[6].
In Internet auctions, we can observe bidders engaging in the
behavior called last minute bidding, namely, a large fraction
of the bids for a good are submitted in the closing seconds
of the auction. Thus, this causes a problem of information
revelation failure, namely, bidders cannot obtain informa-
tion about the target good from the other bidders’ bidding
behavior in open-bid auctions. This results in an inefficient
allocation. To solve this problem, that paper[6] proposed a
method that induces informed bidders to reveal their infor-
mation about the good by paying compensation money.

Let us discuss the following differences between this work
and the previous work[6]. First, in the previous work[6], the
mechanism was based on an open cry auction and an indirect
revelation mechanism. Also, the mechanism pays compensa-
tion money to experts. Our mechanism is a direct revelation
mechanism and does not have to pay compensation money.
This is an advantage of the newly developed mechanism.
Second, while the previous work assumes a rather simple
situation, this paper assumes a fairly complicated situation
in our mechanism. More specifically, the previous work as-
sumes that there are only two levels of Nature’s selection,



high-quality and low-quality, and that there is no overlaps
in players’ evaluation values between different Nature’s se-
lections. On the other hand, in this mechanism, we assume
an arbitrary number of levels of Nature’s selections and al-
low overlap in the players’ evaluation values between differ-
ent Nature’s selections. Third, the previous work defined
player’s utility with a special assumption. In this work, we
allow a player’s utility to have a quasi-linear form. A quasi-
linear form is a very common assumption and widely used
in much literature.

In general, in order to handle a situation under asym-
metric information on Nature’s selections, it is a common
and widely used method to have the auctioneer or the seller
guarantee the quality of the good. In the general affiliated
value model[7], it is strategically dominant for the auction-
eer or the seller to tell the truth about the quality of the
good. Namely, if the good is a high-quality good, the auc-
tioneer or the seller announces this. Conversely, if the good
is a low-quality good, the auctioneer or the seller announces
this without hiding any bad information. The result can be
a higher expected revenue for the seller. However, forming
contracts to guarantee the quality is troublesome because
agreements need to be made on how to measure quality.
Moreover, in an auction among consumers, the seller, as
well as the buyers, is not always an expert on the quality of
the good. Therefore, this solution is not always feasible.

7. CONCLUSIONS
In this paper, we proposed an auction mechanism under

asymmetric information on Nature’s selections. The main
issue is how the mechanism makes experts reveal their infor-
mation on Nature’s selection to attain an efficient allocation
of the good. In order to design an information revelation
mechanism, the Clarke mechanism has been widely used in
much literature. However, we cannot simply employ the
Clarke mechanism since, in this setting, even the auctioneer
cannot decide Nature’s selection. Therefore, in this paper,
we proposed an auction protocol under asymmetric infor-
mation on Nature’s selections. The following advantages of
the mechanism were found. First, in our mechanism, for
experts, truth telling is a dominant strategy. Second, under
the assumption that the number of experts is larger than
(or equal to) a given threshold and the number of irrational
players who declare false Nature’s selections are less than the
threshold, truth telling is best response. Third, our mech-
anism can realize Pareto efficient allocation. Fourth, even
if there exist irrational players, if the number of irrational
players is less than the threshold, rational players do not
suffer loss.
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APPENDIX

A. DOMINANTSTRATEGYFOREXPERTS
We confirm that false bids must not result in positive util-

ity for expert i or must result in a payment that equals the
payment that he makes at the true value. qi represents Na-
ture’s selection observed by expert i. qm′ represents the
maximum Nature’s selection submitted without i. q′

i repre-
sents expert i’s false Nature’s selection. For the following
cases, we prove that if i declares q′

i, there is no benefit for i.

1. When qi < qm′ , qi equals to qI . qm′ equals to qR. If
i declares the truth, this is case 2 or case 3, and he
does not have the chance to win the good. If i declares
a falsehood, q′i = qm′ and i wins, this is case 3. The
payment ti is the maximum evaluation value within
BE,R, BN,R, and αqI . Since αqI ≥ bi,qI , ti > bi,qI .
Namely, i’s utility ui = bi,qI −ti ≤ 0. Thus, if i declares
a false bid, i cannot get positive utility.

2. When qi = qm′ , in the case of qi = qm′ = qR, if i
declares the truth, since the number of bidders who
declare qm′ is more than two, case 3 is applied. The
payment is the maximum evaluation value within BE,R,
BN,R, and αqI . Obviously, there is no benefit from
declaring false evaluation values. If i declares a false-
hood, if q′i = qI < qm′ = qR, case 2 or case 3 is applied.
Since i does not declare the maximum Nature’s selec-
tion qm′ , i has no chance to win the good. Thus, there
is no benefit from declaring a false bid.

In the case of qi = qm′ = qI , if i declares the truth
and i wins, the payment is the maximum evaluation
value within BE,I and BN,I . Obviously, there is no



benefit from declaring false evaluation values. If i de-
clares a falsehood, i.e., if q′

i = qR > qm′ = qI , case
2 is applied. The payment is the maximum evaluation
value within BE,I and BN,I . This is the same as or
larger than the payment when i tells the truth. Thus,
there is no benefit from declaring a false bid.

3. When qi > qm′ , qi equals to qR. qm′ equals to qI .
If i declares the truth, this is case 2. If i wins, the
payment is the maximum evaluation value within BE,I

and BN,I . If i declares a falsehood, this is case 1. If
i wins, the payment is the maximum evaluation value
within BE,I and BN,I . This is the same as or larger
than the payment if i tells truth. Thus, there is no
benefit from declaring a false bid.

B. BEST RESPONSE FOR AMATEURS
Suppose that the number of experts is larger than k, and

experts take a dominant strategy. Also, there exist k − 1
or less irrational players. Under this assumption, we prove
that for amateur j, telling the truth is the best response.
Here, j has two strategies, declaring that he is an amateur
or declaring that he is an expert.

When j truthfully declares that he is an ama-
teur. Obviously there is no benefit even if he declares a
larger/smaller false evaluation. Since this is case 4, j can win
if the following is satisfied. bj,qm′ = max{BE,qm′ , BN,qm′ ,
αqm′−1

, bj,qm′ }. The payment is tj = max{BE,qm′ , BN,qm′ ,

αqm′−1
} (1).

When j declares he is an expert

• When case 1 or case 4 is satisfied without j the pay-
ments are the same even if j declares a larger Nature’s
selection than the true Nature’s selection.

When case 1 is satisfied without j, when j can
win, the payment is the same as payment (1).

When case 4 is satisfied without j,

1. When j declares qi′ = qm′ , the number of bidders
who declare qm′ equals k+1, and case 4 is applied.
The payment if j wins is the same as payment (1).

2. When j declares qi′ > qm′ , case 2 is applied. The
payment if j wins is the same as payment (1).

• When case 2 or case 3 is satisfied without j, another
amateur obviously declares that he is an expert, i.e.,
tells a lie. We show that there is no benefit for j.

When case 2 is satisfied without j,

1. When j declares qi′ = qm′ , the number of bidders
who declare qm′ is two. If k > 2, then case 3 is
applied. If k2, then case 4 is applied. For each
case, the payment if j wins is the same as payment
(1).

2. When j declares qi′ > qm′ , only j declares qmax,
and case 2 is applied. In the above, we show that
when case 2 is applied, the payment if j wins is the
same as payment (1).

When case 3 is satisfied without j,

1. When j declares qi′ = qm′ , the number of bidders
who declare qm′ equals k, and case 4 is applied.
The payment if j wins is the same as payment (1)
when j declares the truth.

2. When j declares qi′ > qm′ , only j declares qmax,
and case 2 is applied. In the above, we show that
when case 2 is applied, the payment if j wins is the
same as payment (1).

C. ROBUSTNESS AGAINST IRRATIONAL
PLAYERS

Let us assume qmax is the true Nature’s selection. qm′
represents the maximum Nature’s selection among declared
Nature’s selections. Since experts take a dominant strategy,
they inevitably declare qmax,

When qm′ > qmax, rational players have no chance to
win. Namely, their utility is not less than 0.

When qm′ = qmax, this means that irrational players take
a dominant strategy. In this case, the dominant strategy
equilibrium is satisfied. Thus, the utilities of rational players
are not less than 0.

When qm′ < qmax, case 2, case 3, or case 4 is applied.
When case 2 is applied, if rational player i wins, the payment
is ti = max{BE,qmax−1 , BN,qmax −1 , αqmax −2}.
When case 3 is applied, if rational player i wins, the payment
is ti = max{BE,qmax , BN,qmax , αqmax −1}.
When case 4 is applied, if rational player i wins, the payment
is ti = max{BE,qmax , BN,qmax , αqmax −1}.

In the above three cases, since the payment is based on the
true Nature’s selection qmax, the utilities of rational players
are not less than 0.


