
Utility Revision in A Java-based

Group Decision Support System

Takayuki Ito and Toramatsu Shintani

Department of Intelligence and Computer Science,
Nagoya Institute of Technology,

Gokiso, Showa-ku, Nagoya, 466-8555 Japan.

E-Mail:fitota torag@ics.nitech.ac.jp

Abstract. We propose a utility revision mechanism for persuasion among

Java-based agents in the Group Choice Design Support System (GCDSS).

The GCDSS helps a group decision to make a reasonable choice from al-

ternatives. In the GCDSS, agents negotiate with each other on behalf

of their users. The GCDSS is written in the Java language with IBM's

Aglets Software Development Kit (ASDK). By using the Java language,
the GCDSS becomes platform-independent. The ASDK enables us to

build agents that are robust with respect to security. In the GCDSS,

each user manages a system for an Analytic Hierarchy Process (AHP)

and a Java-based agent. Each user subjectively constructs a decision hi-

erarchy and determines the various weights of alternatives by using AHP.

Based on the hierarchy and the weights, agents negotiate with each other
on behalf of their users. In the negotiation, agents persuade each other

in order to reach an agreement. If an agent is persuaded, the agent tries

to revise the utility for the state of her decision hierarchy by adjusting
the value of pairwise comparisons in the AHP. In this paper, we pro-

pose a utility-revision strategy that uses criteria in the user's subjective

decision hierarchy for the AHP. The advantage of the utility revision
mechanism is that persuasion between agents is facilitated and agents

can more e�ectively come to consensus.

1 Introduction

In recent years, there has been much interest in intelligent agents in the �eld
of Arti�cial Intelligence. In order to act autonomously on behalf of humans in
a network environment, intelligent agents should have their own knowledge and
utilities. Therefore, in multiagent systems[17], agents' goals can be con
icting.
Ideally, agents should be working toward an agreement in order to resolve con
ict
or encourage cooperation. Reaching an agreement is one of the most important
task of agents.

There are several Java-based agent-building packages that allow users to
build their own Java-based agents. Because these Java-based agent-building
packages are written in Java[1], they can run on any computer with a Java
runtime. IBM's Aglets Software Development Kit (ASDK) was one of the �rst
complete packages for building agents, and it has received much attention[10].

The Java-based agents in the ASDK are called Aglets. Aglets are Java objects
that can move from one host on the Internet to another. The ASDK provides a
security model that enables us to use Aglets in the network. The ASDK's security
model enables us to build agents that are robust with respect to security.

There is growing interest in group decision support systems (GDSSs) based
on Intelligent agents[18] in the �eld of Groupware[3] and Computer Supported
Cooperative Works(CSCWs)[19]. A GDSS[2] is a computer-based system that
facilitates the solution of unstructured problems by a group of decision makers.
We have proposed a Group Choice Design Support System (GCDSS) that is
a GDSS based on multi-agent negotiation[9]. GCDSS helps a group decision
to make a reasonable choice from alternatives. In the GCDSS, we employ the
Analytic Hierarchy Process (AHP)[15] in order to quantify the user's subjective
judgements. The AHP is a method for making decisions in situations that are
hard to analyze quantitatively. The AHP aims to maximize the user's intuition
and experience. The AHP involes three stages: (1) The user develops a hierarchy
by organizing the problem into its basic components. We call this hierarchy the
decision hierarchy. (2) The next step is to establish relative importance weights
for each set of elements at each level of hierarchy by using pairwise comparisons
based on the decision hierarhcy. (3)Finally, the resulting relative importance
weights are composed into composite value that relfect the overall importance
of alternative.

In the GCDSS, agents negotiate with each other. In order to reach an e�ec-
tive agreement among agents, we have proposed persuasion mechanisms[8][16].
In a persuasion between agents, an agent who persuades another agent is called
a persuader, and an agent who is persuaded by a persuader is called a com-
promiser. The persuasion mechanism can be outlined as follows:

1. Request The persuader sends a proposal to the compromiser in order to
reach an agreement.

2. Utility revision The compromiser receives the proposal. If the compromiser
is able to accept the proposal, she needs not revise her utility (needs, deci-
sions, or preference). If she is unable to accept the proposal, the compromiser
tries to revise her utility in order to accept the proposal.

3. Reply If the compromiser is able to accept the proposal as a result of the
utility revision, she replies with an agreement message. If not, the compro-
miser replies with a reject message.

In the persuasion mechanism proposed in the GCDSS[9] agents try to adjust the
value of pairwise comparisons in the AHP. In this paper, we propose a utility-
revision strategy that uses criteria in the user's subjective decision hierarchy for
the AHP.

We present in this paper a utility-revision strategy for persuasion among
agents in intelligent group decision support systems. The paper consists of �ve
sections. In section 2, we give an outline for the GCDSS. In section 3, we present
a new persuasion strategy based on a subjective decision hierarchy. In section
4, we show a user interface for the persuasion mechanism of the GCDSS and

discuss the results of our current experiments. Related works are discussed in
section 5, and in section 6, we make some concluding remarks.

2 The outline of the GCDSS

2.1 Agent-based Group Decision Support in the GCDSS

The GCDSS[9] is a group decision support system based on multi-agent negotia-
tion. The GCDSS is written in the Java language[1] with the Aglets Software De-
velopment Kit (ASDK)[11]. The ASDK provides API libraries for building Java-
based agents. The Java-based agents are called Aglets. By using the Java lan-
guage, the GCDSS becomes platform-independent. Each user's decision-making
is supported by their own hierarchical decision support module in the GCDSS.
The hierarchical decision support modules are written in Java. Agents man-
age their particular user's hierarchical decision support module and negotiate
based on the information which is supplied by the hierarchical decision support
module. We build agents in the GCDSS as Aglets. Aglets can interact with the
decision support modules by method calls in Java and can interact with other
Aglets by message objects provided by the ASDK. The hierarchical decision sup-
port module has functions to help generate alternatives, to make judgements for
pairwise comparisons, and to construct a hierarchy. The process for supporting
group decision-making is described as follows: (1)A host user proposes a topic
to be decided. (2)Users make and choose alternatives from a shared alternative
database. The alternative database has alternatives for the topic. For example,
if Choosing a Destination for travel is the proposed topic, then the alternative
database has Los Angeles, Las Vegas, San Francisco, Tokyo, and so on. (3) Each
user constructs a decision hierarchy for AHP using the module. The hierarchy
clari�es elements which should be considered in the decision making process. The
module is used to quantify the subjective judgements of decision makers by using
AHP-based pairwise comparisons. (4) Agents negotiate with each other based
on their users' subjective weights and the decision hierarchy. Negotiation among
agents is based on the persuasion mechanism. (5) The results of the negotiation
are reported to all users.

In step (4) of the process for supporting group decision-making, agents negoti-
ate with each other. A negotiation among agents consists of persuasion between
two agents. We discuss persuasion among agents in section 3. A negotiation
among agents can be described as follows[9]. First, agents pair o� into groups.
Next, within each group, one agent who selected randomly persuades the other.
If these individual persuasions succeed, the persuading agents assume represen-
tation of their respective groups. If the persuasions fail, the agents change places.
Next, the representatives begin negotiating with each other. Finally, the agents
reach a consensus.

2.2 Constructing a Decision Hierarchy with AHP

C1 C3

A1 A2 A3

The pairwise comprison matrix
 with respect to criterion C1

2

1/21/9

9

1/3

3

1

1

1 0.705

0.205

0.089

Weights

A2

A1

A3

A1 A2 A3

Goal

C2

C5C4

A decision hierarchy of the AHP

Fig. 1. Constructing a Decision Hierarchy

In the GCDSS, in order to measure the subjective judgements of users, we
employ the AHP. Fig. 1 shows a typical hierarchy and a pairwise comparison
matrix. In the AHP, users divide the problem into a hierarchy that consists of a
goal, criteria (and possibly sub-criteria), and alternatives. For example, in Fig.
1 the goal, the overall objective, is decomposed into criteria C1,C2, and C3.

The subcriteria C4 and C5 are added under the C3 criterion. The features of
the decision hierarchy are as follows: (1)Each criteria exists at the same level is
independent. (2)Each level of the hierarchy is independent. The judgement of
the pairwise comparison between factors (in Fig. 1, alternatives A1,A2, and A3)
on a certain level is made with respect to the criterion that is a factor (in Fig. 1,
criterion C1) on the upper level. By interpreting a set of judgement values as a
matrix (top left of Fig. 1), the weights (i.e., measurement of criteria) of factors
are derived from the matrix by using an eigenvector approach. To put it more
concretely, the weights of each factor are derived as the eigen-vector for the max
eigen-value of the pairwise comparison matrix. As a whole hierarchy, the weights
of the alternatives can be recalculated by composing the weights of the criteria.

3 A Utility Revision Mechanism

3.1 Utility Revision based on the Decision Hierarchy

When an agent is persuaded, the agent tries to revise her utility in order to
compromise. Agents have the following two strategies for revising their utility:
(1)Utility revision based on user's pairwise comparison proposed in[9]. (2)Utility
revision based on user's subjective decision hierarchy proposed here. If an agent
can not revise her utility for the state of the decision hierarchy by the strategy
(1), she can try using strategy (2). Strategy (1) is based on adjusting weights in
the pairwise comparison matrix for the AHP. In contrast, strategy (2), proposed
here, is based on user's subjective decision hierarchy for the AHP.

In the AHP, criteria will be used to evaluate how well each alternative sat-
is�es the decision objectives. It is hard for the users to create criteria because

AHP's decision hierarchy must satisfy the following conditions: (1)Each criterion
existing at the same level must be independent. (2)Each level of the hierarchy
must be independent. In order to reduce the work load for creating criteria and
to enable more
exible decision-making, we add certainty to the criteria. In or-
der to describe the user's certainty regarding a particular criterion, we propose
two types of criteria: (1) a certain criterion and (2) an uncertain criterion. For
example, if a criterion is created as a certain criterion by a user, this means
that the criterion is reliable. On the other hand, if the user creates an uncertain
criterion, this means that the criterion is unreliable.

Certain Criterion

Uncertain Criterion
(ACCEPT)

Uncertain Criterion
(IGNORE)

Choosing a Destination(a)

Interest Cost Safty

Sightseeing Casino

Los Angeles Las Vegas

(c)

(d)

San Francisco

Choosing a Destination

Interest Cost Safty

Sightseeing Casino

Los Angeles Las Vegas San Francisco

Choosing a Destination

Interest Cost Safty

Sightseeing Casino

Los Angeles Las Vegas San Francisco

Choosing a Destination

Interest Cost Safty

Sightseeing Casino

Los Angeles Las Vegas San Francisco

Fig. 2. Creating Candidates

In Strategy (2), a compromiser, an agent who is persuaded, tries to relabel
uncertain criteria and to recalculate the weights of alternatives in order to revise
her utility. We propose the labels ACCEPT and IGNORE to describe the states
of an uncertain criterion. If the label of an uncertain criterion is ACCEPT, this
means that the agent calculates the entire hierarchy that includes this criterion.
If the label of an uncertain criterion is IGNORE, this means that the agent cal-
culates the entire hierarchy that does not include this criterion. For example, we
show a decision hierarchy at the top of Fig.2. \Choosing a Destination," enclosed

by a square, shows the goal of this decision hierarchy. \Los Angeles,"\Las Vegas,"
and \San Francisco," also enclosed by a squares, show the alternatives for the
goal. A black round box indicates a certain criterion, and a round box enclosed
by an oval indicates a temporary (or uncertain) criterion labeled ACCEPT. A
crossed-out, rounded box indicates a temporary (or uncertain) criterion labeled
IGNORE. Here, the alternatives are omitted in Fig. 2. The initial label of each
uncertain criterion is ACCEPT.

INPUT : decision hierarchy (DT) and proposal alternative (PA).
OUTPUT: new decision hierarchy (NDT) or empty.
Function adjusting(DT;PA)

Begin

NDT := �

CANDIDATES := �

For i := 1 to Number of Uncertain Criteria in DT

If the label of criterioni in DT is labeled ACCEPT

then

change the label of criterioni in DT to IGNORE

If DT has enough criteria labeled ACCEPT

then

CANDIDATES := CANDIDATES [DT

end If

end If

end for

ADT := �

For i := 1 to Number of DT s in CANDIDATES

calculate the weights of alternatives in DTi

If max weight alternative(DTi) = PA

then

ADT := ADT [DTi

end If

end for

NDT := random select from(ADT)
return NDT

end.

Fig. 3. An Algorithm for the Utility Revision

In a persuasion, a persuader sends a proposal to a compromiser. The pro-
posal is the most preferable alternative for the persuader in the GCDSS. If the

compromiser's most preferable alternative is not the same as the persuader's,
the compromiser tries to adjust her decision hierarchy in order to revise the
utility for the state of her decision hierarchy. Fig.3 shows an algorithm for util-
ity revision. The input of the function is a current decision hierarchy and the
proposal alternative. The output of the function is a new decision hierarchy if
the compromiser can accept the proposal alternative. If the compromiser cannot
accept, the output is empty. Empty means that the utility revision has failed.

First, the states of one uncertain criterion labeled ACCEPT changes to IG-

NORE. An agent builds adjusted decision hierarchies as candidates as shown
in Fig.2. In Fig.3,the set of candidates is expressed by CANDIDATES. If a
decision hierarchy does not have enough uncertain criteria labeled ACCEPT for
calculating the weights of alternatives, an agent removes the decision hierarchy
from the candidates. In calculating the weights of alternatives, there are enough
uncertain criteria labeled ACCEPT if there is one or more uncertain criterion
labeled ACCEPT at each level of the decision hierarchy. If there are no can-
didates, the utility revision is a failure. In Fig. 2, the candidates are decision
hierarchies (b),(c), and (d).

Second, for each of the candidates, the weights for alternatives are calculated.

The criteria labeled IGNORE and the criteria connected to the criterion labeled
IGNORE are not used in calculations for the entire hierarchy. For example, in
Fig. 2, the criterion labeled IGNORE and the criteria for the level under the
level of the criterion labeled IGNORE in decision hierarchy (c) are not used for
calculating the weights of the alternatives.

Finally, an agent selects an acceptable decision hierarchy from the candidates
as her new decision hierarchy. In the acceptable decision hierarchy, the most
preferable alternative is the same as the proposal which is the persuader's most
preferable alternative. In Fig.3, the functionmax weight alternative returns the
most important alternative. If there are several acceptable decision hierarchies,
the agent randomly selects one decision hierarchy from the acceptable decision
hierarchies. In Fig.3, the set of acceptable decision hierarchies is represented by
ADT , and the function random select from selects a decision hierarchy from

this set.

3.2 The Persuasion Process based on Utility Revision

In this section, we show the process of persuasion between two agents. An agent
who persuades another agent is called a persuader, and an agent who is per-
suaded by a persuader is called a compromiser. The process of persuasion can
be described as follows: (Step 1) The persuader sends a proposal to the compro-
miser. The proposal is the most preferable alternative for the persuader(request).
(Step 2) The compromiser receives the proposal. If the compromiser is able to
accept the proposal, this persuasion succeeds. If she is unable to accept the pro-
posal, the compromiser tries to revise the utility for the state of her decision
hierarchy in order to accept the proposal(utility revision). If the most preferable
alternative is the same as the proposal, the agent is able to accept the proposal,

and the utility revision succeeds. If not, the utility revision has failed. The util-
ity revision process can be described as follows: (Step 2.1) By using strategy
(1) based on pairwise comparisons described in section 3.1, the agent tries to
revise the utility for the state of her decision hierarchy. If the utility revision is
a failure, the agent proceeds to step 2.2. (Step 2.2) The agent tries to revise her
utility for the state of the decision hierarchy by using the strategy (2) based on
the decision hierarchy described in section 3.1. If the utility revision succeeds,
the agent is able to accept the proposal and proceeds to step 3. If the utility
revision is a failure, the agent is unable to accept the proposal and proceeds to
step 4. (Step 3) The agent asks her user whether the user can accept the new
decision hierarchy. This step ensures that the user feels in control of her agent.
The feeling of control is an important factor in designing an agent[14]. (Step
4) If the compromiser is able to accept the proposal as a result of the utility
revision, she replies with an agreement message. If not, the compromiser replies
with a reject message (reply). If the persuader accepts an agreement message,
this persuasion has succeeded. If the persuader accepts a reject message, the
compromiser tries to persuade the persuader (i.e. the agents change position),
and the process begins again with steps 1,2, and 3. If the new persuader accepts

a reject message from the new compromiser, this persuasion is a failure.

4 Discussions

4.1 An Example

Fig. 4. A Window for Presenting the Decision Hierarchy

Fig.4 shows an example of the GCDSS's window for presenting the labeled
decision hierarchy. In Fig.4, the white rectangles for \Interest" and \Safety" rep-
resent uncertain criteria and the black rectangles for \Academic," \Sightseeing,"

and \Cost" express the certain criteria. An ACCEPT label is shown above each
uncertain criterion.

In Fig.5, the agent asks her user whether the user can accept the new decision
hierarchy at step (3) of the persuasion process. The two windows at the bottom
of Fig.5 are candidates for the new decision hierarchy. The window whose frame
is represented by a thick line is the agent's proposal. In Fig.5, the proposal is
the bottom right window.

The top window of Fig.5 shows the agent server for managing the agents. The
agent server is provided by the Aglets Software Development Kit. The middle
window of Fig.5 shows the current status of the agent. If the user can accept the
proposal, the user can push the \OK" button in the center window of Fig.5. If
not, the user can push the \No" button.

Fig. 5. An Example based on Aglets

4.2 The Advantage of The Utility Revision Mechanism

The advantage of the utility revision mechanism proposed here is that it facili-
tates successful persuasion among agents by providing an additional persuasion
strategy, as described in Section 3.1. Therefore, the utility revision mechanism
allows agents to reach a consensus more e�ectively. However, the easier agents
reach a consensus, the greater the number of agents who must compromise. This
means that the number of users who must compromise is increased, making the
explanation mechanism even more important. In the GCDSS, agents explain to
users how to the decision hierarchy is being revised (Fig.5).

The utility revision algorithm (Fig. 3) proposed here tries to change the
label of one uncertain criterion in a decision hierarchy. The reason why the
algorithm change only one uncertain criterion is described as follows: If the al-
gorithm change the labels of several uncertain criteria in a decision hierarchy,
weights of alternatives change dramatically. The users cannot accept these dra-
matic changes that have been made by their agents in their decision hierarchy.
Therefore, our algorithm tries to change only one uncertain criterion at a time
in a decision hierarchy.

There has been much discussion of the design of agents [14] [13]. Based on our
own research, we believe that the following three points are the most important
considerations in the design of agents. First, the users need to feel in control
of their agents. Our agents ask the user when the agent adjusts the decision
hierarchy. If the user is unable to accept the agent's proposal, the user can
reject that proposal. Second, agents should hide complexity while simultaneously
revealing the underlying operations. In the AHP,the calculation of the decision
hierarchy is complex. Therefore, in the GCDSS the agents hide the calculation
of the weights of alternatives while revealing the results of the adjusting. Third,
agents should maintain the privacy of the users. In the GCDSS, agents negotiate
based on the persuasion mechanism. In the persuasion mechanism, an agent's
information regarding the user's preference cannot be accessed by the other
agents. The agent who is persuaded tries to revise her utility on her own.

5 Related Works

Multi-agent systems[17] have been investigated very actively. Some interesting
recent work regarding systems that support group activities includes Haynes,
Sen, Arora, and Nadella's automated meeting scheduling system[6], Garrido
and Sycara's distributed meeting scheduling system[5], a multiagent-based o�ce
work support system[7], Mediator[4], and so on. In the Hayes, Sen, Arora, and
Nadella[6]'s system, agents can schedule meetings within user's preference. In
this system, agents cannot adjust user's preference. Garrido and Sycara[5] have
modeled negotiation as a constraint-relaxation process for distributed meeting
scheduling. In constraint-relaxation process, agents can adjust user's preferences.
Since the constraint-relaxation proceeds automatically, the agents cannot explain
the reason why the user's preference is adjusted. In our system, agents can adjust
user's preference in a persuasion process. Based on certainty for criterion, agents
can explain the reason for adjusting the user's preference. There exist agents for
personal work and group work, and they are mutually connected in a two-layered
agent network. Since the goal of the system[7] is to facilitate o�ce work, agents
perform tasks by communication based on requests and answers. The Mediator[4]
is a groupware coordination tool that is designed to share knowledge structures
across local and wide area networks by using concept maps. These works[7][4]
provide functions for sharing information and knowledge among the users. In the
GCDSS, agents negotiate on behalf of users. In the negotiation, each agent tries
to revise her utility in order to compromise. Speci�cally, our system provides sup-

port for negotiations among users. Agents that support personal activity have
been developed. Maes[12] has focused on learning the single user's preference by
agent, implementing an agent for electronic mail handling, and so on. She does
not, however, focus on agent negotiation. In the GCDSS, the user's preference
is represented by a decision hierarchy for the AHP. Agents can use the decision
hierarchy as a representation of the user's preference.

6 Conclusions

We propose a utility revision mechanism for persuasion among Java-based agents
in the Group Choice Design Support System (GCDSS). The GCDSS is an in-
telligent group decision support system based on negotiation among Java-based
agents. The GCDSS is written in Java. Therefore, the GCDSS can run on any
computer with a Java runtime. We employ IBM's ASDK in order to build
Java-based agents. In the ASDK, Java-based agents are called Aglets. In the
GCDSS, Aglets can interact with other Aglets with message objects provided
by the ASDK and can interact with the hierarchical decision support module
via method call in Java. The ASDK provides a security model for building Java-
based agents in the network. The security model enables us to build agents that
are robust with respect to security. If an agent is persuaded during a negotia-
tion, the agent tries to recalculate the decision hierarchy in order to revise the
utility for the state of her decision hierarchy. Agents have two strategies for
utility revision. Strategy (1) is based on adjusting weights in the pairwise com-
parison matrix for the AHP. In contrast, strategy (2), proposed in this paper, is
based on a user's subjective decision hierarchy in the AHP. In order to reduce
the user's work load for creating criteria, we introduce certain and uncertain

criteria. Users can create uncertain criteria if the criteria are not reliable. Fur-
thermore, we introduce the labels ACCEPT and IGNORE to describe states of
a uncertain criterion. By using these labels, agents adjust the user's decision
hierarchy in order to revise their utility. In this paper, we discuss the advantage
of the proposed utility revision mechanism and the design of agents. The ad-
vantage of the utility revision mechanism is that persuasion between agents is
facilitated and agents can more e�ectively come to consensus. Our design of the
agents satis�es the following three points for the design of agents which are also
included in the discussion[14][13]: First, the users can have the feeling that they
are in control of their agents. Second, our agents can hide complex work such as
decision-hierarchy calculations but reveal underlying operations such as the ad-
justing process by showing the results of the adjusted decision hierarchy. Third,
our agent can maintain the user's privacy regarding individual preferences.

References

1. Arnold, K. and Gosling, J.: The Java Programming language. Addison-Wesley,

1996.

2. Desanctis, G. and Gallupe, R.B.: A foundation for the study of group decision
support systems. Management Science, Vol.33, No.5, pp.589{609, 1987.

3. Ellis, C.A., Gibbs, S.J., and Rein, G.L. : Groupware : Some Issues and Experiences.

Communications of the ACM, Vol.34, No.1, pp. 38{58, 1991.
4. Gaines, B.R., and Shaw, M.L.G.: Using Knowledge Acquisition and Representa-

tion Tools to Support Scienti�c Communities. In Proceedings of the 12th National

Conference on Arti�cial Intelligence (AAAI-94), pp. 707{714, 1994.
5. Garrido, L., and Sycara, K.: Multi-agent meeting scheduling: Preliminary exper-

iment results. In Proceedings of Second International Conference on Multi-Agent

Systems(ICMAS-96), pp.95{102., 1996.
6. Haynes, T., Sen, S., Arora, N., and Nadella, R.:An Automated Meeting Scheduling

System that Utilizes User Preferences, in Proceedings of the First International

Conference on Autonomous Agents (Agents'97), pp. 308{315, 1997.
7. Ishiguro, Y., Tarumi, H., Asakura, T., Kida, K., Kusui, D. and Yoshifu, K.: An

Agent Architecture for Personal and Group Work Support, Proceedings of Second

International Conference on Multi-Agent Systems(ICMAS-96), pp. 134{135, 1996.
8. Ito, T., and Shintani, T. : An Agenda-scheduling System Based on Persuasion

Among Agents, In Proceedings of IPSJ International Symposium on Information

Systems and Technologies for Network Society, pp.287-294, World Scienti�c, 1997.
9. Ito, T., and Shintani, T. :Persuasion among Agents : An Approach to Implementing

a Group Decision Support System Based on Multi-Agent Negotiation, In Proceed-

ings of the Fifteenth International Joint Conf. on Arti�cial Intelligence (IJCAI-

97), Morgan Kaufmann, pp. 592{597, 1997.

10. Kiniry, J. and Zimmerman, D. :A Hands-on Look at Java Mobile agents, IEEE

Internet Computing, pp.21-30, Vol.1, No.4, July/August, 1997.
11. Lange, D. and Chang, D., :IBM Aglets Workbench, Programming Mobile Agents

in Java, http: //www.trl.ibm.co.jp /aglets /whitepaper.htm , 1996.

12. Maes, P.: Agents that Reduce Work and Information Overload., Communications
of the ACM , Vol. 37, No. 7, pp. 31{40 ,1994.

13. Malone, T. W., Lai, K., and Grant K. R.,: Agents for Information Sharing

and Coordination: A History and Some Re
ections, Software Agents (Bradshaw,
J. M.(ed.)), AAAI Press/The MIT Press, chapter 7, pp. 109{143, 1997.

14. Norman, D.A.: How Might People Interact with Agents, Software Agents (Brad-
shaw, J. M.(ed.)), AAAI Press/The MIT Press, chapter 2, pp. 49{55, 1997.

15. Saaty, T. L. : The Analytic Hierarchy Process, McGraw Hill, 1980.

16. Shintani, T., and Ito, T., : An Architecture for Multi-Agent Negotiation Using Pri-
vate Preferences in a Meeting Scheduler, In Proceedings of the 5th Paci�c Rim In-

ternational Conferences on Arti�cial Intelligence (PRICAI'98), 1998 (to appear).

17. Sycara, Katia P. : Multiagent Systems, In AI magazine, AAAI, Vol.19, No.2, 1998.
18. Turban, E., and Aronson, J.E., : Decision Support Systems and Intelligent Systems,

�fth edition, Prentice-Hall International, Inc., 1998.

19. Wilson, P.: Introducing cscw - what it is and why we need it. In Stephen A.R.

Schrivener, editor, Computer-Supported Cooperative Work, Applied Information

Technology series, chapter 1, pp. 1{18. UNICOM, 1994.

This article was processed using the LaTEX macro package with LLNCS style

